Displaying all 3 publications

Abstract:
Sort:
  1. Mohd Ali MKFB, Abu Bakar A, Md Noor N, Yahaya N, Ismail M, Rashid AS
    Environ Technol, 2017 Oct;38(19):2427-2439.
    PMID: 27875932 DOI: 10.1080/09593330.2016.1264486
    Microbiologically influenced corrosion (MIC) is among the common corrosion types for buried and deep-water pipelines that result in costly repair and pipeline failure. Sulfate-reducing bacteria (SRB) are commonly known as the culprit of MIC. The aim of this work is to investigate the performance of combination of ultrasound (US) irradiation and ultraviolet (UV) radiation (known as Hybrid soliwave technique, HyST) at pilot scale to inactivate SRB. The influence of different reaction times with respect to US irradiation and UV radiation and synergistic effect toward SRB consortium was tested and discussed. In this research, the effect of HyST treatment toward SRB extermination and corrosion studies of carbon steel coupon upon SRB activity before and after the treatment were performed using weight loss method. The carbon steel coupons immersed in SRB sample were exposed to HyST treatment at different time of exposure. Additionally, Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were used to investigate the corrosion morphology in verifying the end product of SRB activity and corrosion formation after treatment. Results have shown that the US irradiation treatment gives a synergistic effect when combined with UV radiation in mitigating the SRB consortium.
    Matched MeSH terms: Sulfur-Reducing Bacteria
  2. Beckmann S, Luk AWS, Gutierrez-Zamora ML, Chong NHH, Thomas T, Lee M, et al.
    ISME J, 2019 03;13(3):632-650.
    PMID: 30323265 DOI: 10.1038/s41396-018-0296-5
    Despite the significance of biogenic methane generation in coal beds, there has never been a systematic long-term evaluation of the ecological response to biostimulation for enhanced methanogenesis in situ. Biostimulation tests in a gas-free coal seam were analysed over 1.5 years encompassing methane production, cell abundance, planktonic and surface associated community composition and chemical parameters of the coal formation water. Evidence is presented that sulfate reducing bacteria are energy limited whilst methanogenic archaea are nutrient limited. Methane production was highest in a nutrient amended well after an oxic preincubation phase to enhance coal biofragmentation (calcium peroxide amendment). Compound-specific isotope analyses indicated the predominance of acetoclastic methanogenesis. Acetoclastic methanogenic archaea of the Methanosaeta and Methanosarcina genera increased with methane concentration. Acetate was the main precursor for methanogenesis, however more acetate was consumed than methane produced in an acetate amended well. DNA stable isotope probing showed incorporation of 13C-labelled acetate into methanogenic archaea, Geobacter species and sulfate reducing bacteria. Community characterisation of coal surfaces confirmed that methanogenic archaea make up a substantial proportion of coal associated biofilm communities. Ultimately, methane production from a gas-free subbituminous coal seam was stimulated despite high concentrations of sulfate and sulfate-reducing bacteria in the coal formation water. These findings provide a new conceptual framework for understanding the coal reservoir biosphere.
    Matched MeSH terms: Sulfur-Reducing Bacteria/genetics; Sulfur-Reducing Bacteria/growth & development; Sulfur-Reducing Bacteria/metabolism*
  3. Deng YF, Liu YY, Zhang YT, Wang Y, Liang JB, Tufarelli V, et al.
    J Sci Food Agric, 2017 Jun;97(8):2382-2391.
    PMID: 27664398 DOI: 10.1002/jsfa.8050
    BACKGROUND: The efficacy and role of inulin in the mitigation of enteric sulfur-containing odor gases hydrogen sulfide (H2 S) and methyl mercaptan (CH3 SH) in pigs were examined in this study. Twelve Duroc × Landrace × Yorkshire male finisher pigs (60.7 ± 1.9 kg), housed individually in open-circuit respiration chambers, were randomly assigned to two dietary groups, namely basal diet (control) and basal diet supplemented with 1% (w/w) inulin. At the end of the 45 day experiment, pigs were slaughtered and volatile fatty acid (VFA) concentration, sulfate radical (SO42- ) concentration, population of sulfate-reducing bacteria (SRB) and expression of methionine gamma-lyase (MGL) gene were determined in contents from the caecum, colon (two segments) and rectum. Metabonomic analysis was used to compare differences in biochemical composition, and the Illumina MiSeq procedure to investigate differences in bacterial components, in the different parts of the large intestine between inulin-supplemented and inulin-free (control) groups.

    RESULTS: Inulin decreased (P < 0.05) the average daily enteric H2 S and CH3 SH production by 12.4 and 12.1% respectively. The concentrations of acetate, propionate and butyrate in the large intestinal content were significantly increased (P < 0.05) with inulin treatment, whereas valerate concentration and MGL mRNA expression decreased (P < 0.05). The growth of Lactobacillus, Butyrivibrio, Pseudobutyrivibrio, Bifidobacterium and Clostridium butyricum was stimulated, while that of Desulfovibrio, the dominant SRB, was inhibited, and there was an accumulation of SO42- in the large intestinal content of the inulin-supplemented pigs, suggesting that inulin mitigates H2 S generation from the SO42- reduction pathway by reducing the growth of SRB.

    CONCLUSION: The results showed that inulin mitigates CH3 SH generation via three methionine degradation metabolic pathways and H2 S generation from two cysteine degradation metabolic pathways, thus resulting in increased synthesis of these two sulfur-containing amino acids in the pig large intestine. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Sulfur-Reducing Bacteria/classification; Sulfur-Reducing Bacteria/genetics; Sulfur-Reducing Bacteria/growth & development*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links