Displaying all 3 publications

Abstract:
Sort:
  1. Shetty S, Udupa S, Udupa L, Somayaji N
    Indian J. Physiol. Pharmacol., 2006 Apr-Jun;50(2):163-8.
    PMID: 17051736
    The present study was performed to evaluate the wound healing and antioxidant effect of aqueous extract of Ocimum sanctum Linn. (O. sanctum) in rats. Albino rats of either sex were divided into 2 groups. Group I: Wounded control rats; Group II: Wounded rats administered O. sanctum aqueous extract. Wound breaking strength in incision wound model, epithelization period and percent wound contraction in excision wound model were studied. Using dead space wound model, granulation tissue breaking strength, granulation tissue dry weight, hydoxyproline level in dry granulation tissue, superoxide dismutase (SOD) and catalase levels in wet granulation tissue were estimated in both the groups. Increased wound breaking strength, decreased epithelization period, increased percent wound contraction, increased granulation tissue weight and hydroxyproline concentrations were observed. The increased activity of antioxidant enzymes such as SOD, catalase level in extract treated group compared to controls. Granulation tissue was subjected to histopathological examination to determine the pattern of lay-down for collagen using Haematoxylin and Eosin stains which confirm the results. Owing to wound healing and antioxidant activities, O. sanctum may be useful in the management of abnormal healing such as keloids and hypertrophic scars.
    Matched MeSH terms: Superoxide Dismutase/physiology*
  2. Mashitah MD, Masitah H, Ramachandran KB
    Med J Malaysia, 2004 May;59 Suppl B:59-60.
    PMID: 15468818
    Streptococcus zooepidemicus (SZ) is an aerotolerant bacteria and its ability to survive under reactive oxidant challenge raises the question of the existence of a defense system. Thus growth, hyaluronic acid (HA) and hydrogen peroxide (H2O2) production by SZ in the presence of increasing concentration of Mn2+ were studied. The results suggested that the tested strain supported growth and HA production in cultures treated with 1 and 10 mM of Mn2+ regardless of H2O2 presence in the medium. This showed that SZ have acquired elaborate defense mechanisms to scavenge oxygen toxicity and thus protect cells from direct and indirect effect of this radical. In contrast, cells treated with 25 mM Mn2+ were sensitive, in which, the HA production was reduced considerably. Thus showing that the oxygen scavenger systems of the cells may be fully saturated at this concentration.
    Matched MeSH terms: Superoxide Dismutase/physiology
  3. Md Fuzi AA, Omar SZ, Mohamed Z, Mat Adenan NA, Mokhtar NM
    Taiwan J Obstet Gynecol, 2018 Apr;57(2):217-226.
    PMID: 29673664 DOI: 10.1016/j.tjog.2018.02.009
    OBJECTIVE: To validate the gene expression profile obtained from the previous microarray analysis and to further study the biological functions of these genes in endometrial cancer. From our previous study, we identified 621 differentially expressed genes in laser-captured microdissected endometrioid endometrial cancer as compared to normal endometrial cells. Among these genes, 146 were significantly up-regulated in endometrial cancer.

    MATERIALS AND METHODS: A total of 20 genes were selected from the list of up-regulated genes for the validation assay. The qPCR confirmed that 19 out of the 20 genes were up-regulated in endometrial cancer compared with normal endometrium. RNA interference (RNAi) was used to knockdown the expression of the upregulated genes in ECC-1 and HEC-1A endometrial cancer cell lines and its effect on proliferation, migration and invasion were examined.

    RESULTS: Knockdown of MIF, SOD2, HIF1A and SLC7A5 by RNAi significantly decreased the proliferation of ECC-1 cells (p < 0.05). Our results also showed that the knockdown of MIF, SOD2 and SLC7A5 by RNAi significantly decreased the proliferation and migration abilities of HEC-1A cells (p < 0.05). Moreover, the knockdown of SLC38A1 and HIF1A by RNAi resulted in a significant decrease in the proliferation of HEC1A cells (p < 0.05).

    CONCLUSION: We have identified the biological roles of SLC38A1, MIF, SOD2, HIF1A and SLC7A5 in endometrial cancer, which opens up the possibility of using the RNAi silencing approach to design therapeutic strategies for treatment of endometrial cancer.

    Matched MeSH terms: Superoxide Dismutase/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links