Displaying all 3 publications

Abstract:
Sort:
  1. Agatonovic-Kustrin S, Alany RG
    Pharm Res, 2001 Jul;18(7):1049-55.
    PMID: 11496944
    PURPOSE: A genetic neural network (GNN) model was developed to predict the phase behavior of microemulsion (ME), lamellar liquid crystal (LC), and coarse emulsion forming systems (W/O EM and O/W EM) depending on the content of separate components in the system and cosurfactant nature.

    METHOD: Eight pseudoternary phase triangles, containing ethyl oleate as the oil component and a mixture of two nonionic surfactants and n-alcohol or 1,2-alkanediol as a cosurfactant, were constructed and used for training, testing, and validation purposes. A total of 21 molecular descriptors were calculated for each cosurfactant. A genetic algorithm was used to select important molecular descriptors, and a supervised artificial neural network with two hidden layers was used to correlate selected descriptors and the weight ratio of components in the system with the observed phase behavior.

    RESULTS: The results proved the dominant role of the chemical composition, hydrophile-lipophile balance, length of hydrocarbon chain, molecular volume, and hydrocarbon volume of cosurfactant. The best GNN model, with 14 inputs and two hidden layers with 14 and 9 neurons, predicted the phase behavior for a new set of cosurfactants with 82.2% accuracy for ME, 87.5% for LC, 83.3% for the O/W EM, and 91.5% for the W/O EM region.

    CONCLUSIONS: This type of methodology can be applied in the evaluation of the cosurfactants for pharmaceutical formulations to minimize experimental effort.

    Matched MeSH terms: Surface-Active Agents/pharmacokinetics
  2. Doolaanea AA, Mansor N', Mohd Nor NH, Mohamed F
    J Microencapsul, 2014;31(6):600-8.
    PMID: 24697178 DOI: 10.3109/02652048.2014.898709
    The aim of this study is to investigate the cell uptake of Nigella sativa oil (NSO)-PLGA microparticle by neuron-like PC-12 cells in comparison to surfactants; hydrophilic (Tween 80 & Triton X100) and hydrophobic (Span 80). Solvent evaporation was used to precisely control the size, zeta potential and morphology of the particle. The results revealed varying efficiencies of the cell uptake by PC-12 cells, which may be partially attributed to the surface hydrophobicity of the microparticles. Interestingly, the uptake efficiency of PC-12 cells was higher with the more hydrophilic microparticle. NSO microparticle showed evidence of being preferably internalised by mitotic cells. Tween 80 microparticle showed the highest cell uptake efficiency with a concentration-dependent pattern suggesting its use as uptake enhancer for non-scavenging cells. In conclusion, PC-12 cells can take up NSO-PLGA microparticle which may have potential in the treatment of neurodegenerative disease.
    Matched MeSH terms: Surface-Active Agents/pharmacokinetics
  3. Murakami M, Adachi N, Saha M, Morita C, Takada H
    Arch Environ Contam Toxicol, 2011 Nov;61(4):631-41.
    PMID: 21424221 DOI: 10.1007/s00244-011-9660-4
    Perfluorinated surfactants (PFSs) in Asian freshwater fish species were analyzed to investigate tissue distribution, temporal trends, extent of pollution, and level of PFS exposure through food intake. Freshwater fish species, namely carp, snakehead, and catfish, were collected in Japan, Vietnam, India, Malaysia, and Thailand, and 10 PFSs, including perfluorooctanesulfonate (PFOS) and perfluorooctanoate, were analyzed by liquid chromatography-tandem mass spectrometry. PFSs in carp in Tokyo were more concentrated in kidneys (Σ10 PFSs = 257 ± 95 ng/g wet weight [ww]) and livers (119 ± 36 ng/g ww) than in ovaries (43 ± 2 ng/g ww) and muscles (24 ± 17 ng/g ww). Concentrations of PFOS and its precursor, perfluorooctane sulfonamide, in livers of carp and in waters in Tokyo showed a dramatic decrease during the last decade, probably because of 3 M's phasing-out of the manufacture of perfluorooctanesulfonyl-fluoride-based products in 2000. In contrast, continuing contamination by long-chain perfluorocarboxylates (PFCAs) with ≥ 9 fluorinated carbons was seen in multiple media, suggesting that these compounds continue to be emitted. PFS concentrations in freshwater fish species in tropical Asian countries were generally lower than those in developed countries, such as Japan, e.g., for PFOS in muscle, Vietnam < 0.05-0.3 ng/g ww; India < 0.05-0.2 ng/g ww; Malaysia < 0.05-0.2 ng/g ww; Thailand < 0.05 ng/g ww; and Japan (Tokyo) = 5.1-22 ng/g ww. Daily intake of short-chain PFCAs with ≤ 8 fluorinated carbons from freshwater fish species in Japan was approximately one order of magnitude lower than that from drinking water, whereas daily intake of PFOS and long-chain PFCAs with ≥ 9 fluorinated carbons from freshwater fish species was comparable with or greater than that from drinking water. Because the risk posed by exposure to these compounds through intake of fish species is a matter of concern, we recommend the continued monitoring of PFS levels in Asian developing countries.
    Matched MeSH terms: Surface-Active Agents/pharmacokinetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links