Displaying all 11 publications

Abstract:
Sort:
  1. Putsathit P, Neela VK, Joseph NMS, Ooi PT, Ngamwongsatit B, Knight DR, et al.
    Vet Microbiol, 2019 Oct;237:108408.
    PMID: 31585650 DOI: 10.1016/j.vetmic.2019.108408
    Information on the epidemiology of C. difficile infection (CDI) in South-East Asian countries is limited, as is data on possible animal reservoirs of C. difficile in the region. We investigated the prevalence and molecular epidemiology of C. difficile in piglets and the piggery environment in Thailand and Malaysia. Piglet rectal swabs (n = 224) and piggery environmental specimens (n = 23) were collected between 2015 and 2016 from 11 farms located in Thailand and Malaysia. All specimens were tested for the presence of C. difficile with toxigenic culture. PCR assays were performed on isolates to determine the ribotype (RT), and the presence of toxin genes. Whole genome sequencing was used on a subset of isolates to determine the evolutionary relatedness of RT038 (the most prevalent RT identified) common to pigs and humans from Thailand and Indonesia. C. difficile was recovered from 35% (58/165) and 92% (54/59) of the piglets, and 89% (8/9) and 93% (13/14) of the environmental specimens from Thailand and Malaysia, respectively. All strains from Thailand, and 30 strains from Malaysia (23 piglet and 7 environmental isolates) were non-toxigenic. To our knowledge, this is the first and only report with a complete lack of toxigenic C. difficile among piglets, a feature which could have a protective effect on the host. The most common strain belonged to RT038 (ST48), accounting for 88% (51/58) of piglet and 78% (7/9) of environmental isolates from Thailand, and all 30 isolates tested from Malaysia. Piglet RT038 isolates from Thailand and Malaysia differed by only 18 core-genome single nucleotide variants (cgSNVs) and both were, on average, 30 cgSNVs different from the human strains from Thailand and Indonesia, indicating a common ancestor in the last two decades.
    Matched MeSH terms: Swine Diseases/microbiology*
  2. Dahlia H, Tan LJ, Zarrahimah Z, Maria J
    Trop Biomed, 2009 Dec;26(3):341-5.
    PMID: 20237449 MyJurnal
    The isolation of Mycoplasma hyosynoviae from a piglet with severe pneumonia is described. This is the first report of M. hyosynoviae isolation in the country. The lung sample where the isolation was made was severely consolidated, suppurative and pleurisy. The pathogenicity of the M. hyosynoviae isolated has yet to be determined.
    Matched MeSH terms: Swine Diseases/microbiology*
  3. Koh FX, Kho KL, Panchadcharam C, Sitam FT, Tay ST
    Vet Parasitol, 2016 Aug 30;227:73-6.
    PMID: 27523941 DOI: 10.1016/j.vetpar.2016.05.025
    Anaplasma spp. infects a wide variety of wildlife and domestic animals. This study describes the identification of a novel species of Anaplasma (Candidatus Anaplasma pangolinii) from pangolins (Manis javanica) and Anaplasma bovis from wild boars (Sus scrofa) in Malaysia. Based on 16S rRNA gene sequences, Candidatus Anaplasma pangolinii is identified in a distinct branch within the family Anaplasmataceae, exhibiting the closest sequence similarity with the type strains of Anaplasma bovis (97.7%) and Anaplasma phagocytophilum (97.6%). The sequence also aligned closely (99.9%) with that of an Anaplasma spp. (strain AnAj360) detected from Amblyomma javanense ticks. The nearly full length sequence of the 16S rRNA gene derived from two wild boars in this study demonstrated the highest sequence similarity (99.7%) to the A. bovis type strain. Partial 16S rRNA gene fragments of A. bovis were also detected from a small population of Haemaphysalis bispinosa cattle ticks in this study. Our finding suggests a possible spread of two Anaplasma species in the Malaysian wildlife and ticks. The zoonotic potential of the Anaplasma species identified in this study is yet to be determined.
    Matched MeSH terms: Swine Diseases/microbiology*
  4. Che'Amat A, Armenteros JA, González-Barrio D, Lima JF, Díez-Delgado I, Barasona JA, et al.
    Prev Vet Med, 2016 Dec 01;135:132-135.
    PMID: 27843020 DOI: 10.1016/j.prevetmed.2016.11.002
    We assessed the suitability of targeted removal as a means for tuberculosis (TB) control on an intensely managed Eurasian wild boar (Sus scrofa) hunting estate. The 60km(2) large study area included one capture (treatment) site, one control site, and one release site. Each site was fenced. In the summers of 2012, 2013 and 2014, 929 wild boar were live-captured on the treatment site. All wild boar were micro-chipped and tested using an animal side lateral flow test immediately after capture in order to detect antibodies to the Mycobacterium tuberculosis complex (MTC). The wild boar were released according to their TB status: Seropositive individuals onto the release site (hunted after summer), and seronegative individuals back onto the treatment site. The annual summer seroprevalence of antibodies to the MTC declined significantly in live-captured wild boar piglets from the treatment site, from 44% in 2012 to 27% in 2013 (a reduction of 39%). However, no significant further reduction was recorded in 2014, during the third capture season. Fall-winter MTC infection prevalence was calculated on the basis of the culture results obtained for hunter-harvested wild boar. No significant changes between hunting seasons were recorded on either the treatment site or the control site, and prevalence trends over time were similar on both sites. The fall-winter MTC infection prevalence on the release site increased significantly from 40% in 2011-2012 to 64% in 2012-2013 and 2013-2014 (60% increase). Recaptures indicated a persistently high infection pressure. This experiment, the first attempt to control TB in wild boar through targeted removal, failed to reduce TB prevalence when compared to the control site. However, it generated valuable knowledge on infection pressure and on the consequences of translocating TB-infected wild boar.
    Matched MeSH terms: Swine Diseases/microbiology
  5. Che' Amat A, González-Barrio D, Ortiz JA, Díez-Delgado I, Boadella M, Barasona JA, et al.
    Prev Vet Med, 2015 Sep 1;121(1-2):93-8.
    PMID: 26051843 DOI: 10.1016/j.prevetmed.2015.05.011
    Animal tuberculosis (TB) caused by infection with Mycobacterium bovis and closely related members of the M. tuberculosis complex (MTC), is often reported in the Eurasian wild boar (Sus scrofa). Tests detecting antibodies against MTC antigens are valuable tools for TB monitoring and control in suids. However, only limited knowledge exists on serology test performance in 2-6 month-old piglets. In this age-class, recent infections might cause lower antibody levels and lower test sensitivity. We examined 126 wild boar piglets from a TB-endemic site using 6 antibody detection tests in order to assess test performance. Bacterial culture (n=53) yielded a M. bovis infection prevalence of 33.9%, while serum antibody prevalence estimated by different tests ranged from 19% to 38%, reaching sensitivities between 15.4% and 46.2% for plate ELISAs and between 61.5% and 69.2% for rapid immunochromatographic tests based on dual path platform (DPP) technology. The Cohen kappa coefficient of agreement between DPP WTB (Wildlife TB) assay and culture results was moderate (0.45) and all other serological tests used had poor to fair agreements. This survey revealed the ability of several tests for detecting serum antibodies against the MTC antigens in 2-6 month-old naturally infected wild boar piglets. The best performance was demonstrated for DPP tests. The results confirmed our initial hypothesis of a lower sensitivity of serology for detecting M. bovis-infected piglets, as compared to older wild boar. Certain tests, notably the rapid animal-side tests, can contribute to TB control strategies by enabling the setup of test and cull schemes or improving pre-movement testing. However, sub-optimal test performance in piglets as compared to that in older wild boar should be taken into account.
    Matched MeSH terms: Swine Diseases/microbiology
  6. Thong KL, Tan LK, Ooi PT
    J Sci Food Agric, 2018 Jan;98(1):87-95.
    PMID: 28542807 DOI: 10.1002/jsfa.8442
    BACKGROUND: The objectives of the present study were to determine the antimicrobial resistance, virulotypes and genetic diversity of Yersinia enterocolitica isolated from uncooked porcine food and live pigs in Malaysia.

    RESULTS: Thirty-two non-repeat Y. enterocolitica strains of three bioserotypes (3 variant/O:3, n = 27; 1B/O:8, n = 3; 1A/O:5, n = 2) were analysed. Approximately 90% of strains were multidrug-resistant with a multiple antibiotic resistance index < 0.2 and the majority of the strains were resistant to nalidixic acid, clindamycin, ampicillin, ticarcillin, tetracycline and amoxicillin. Yersinia enterocolitica could be distinguished distinctly into three clusters by pulsed-field gel electrophoresis, with each belonging to a particular bioserotype. Strains of 3 variant/O:3 were more heterogeneous than others. Eleven of the 15 virulence genes tested (hreP, virF, rfbC, myfA, sat, inv, ail, ymoA, ystA, tccC, yadA) and pYV virulence plasmid were present in all the bioserotpe 3 variant/03 strains.

    CONCLUSION: The occurrence of virulent strains of Y. enterocolitica in pigs and porcine products reiterated that pigs are important reservoirs for Y. enterocolitica. The increasing trend of multidrug resistant strains is a public health concern. This is the first report on the occurrence of potential pathogenic and resistant strains of Y. enterocolitica in pigs in Malaysia. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Swine Diseases/microbiology*
  7. Khalid KA, Zakaria Z, Toung OP, McOrist S
    Vet Rec, 2009 May 16;164(20):626-7.
    PMID: 19448256
    Matched MeSH terms: Swine Diseases/microbiology*
  8. Lim FS, Khoo JJ, Tan KK, Zainal N, Loong SK, Khor CS, et al.
    Ticks Tick Borne Dis, 2020 03;11(2):101352.
    PMID: 31866439 DOI: 10.1016/j.ttbdis.2019.101352
    Ticks are hematophagous vectors of arthropod-borne disease agents globally. In Malaysia, despite seroprevalence studies indicating the presence of tick-borne diseases among the indigenous people, the etiological agents of these diseases are still unclear. These indigenous people, also known as the Orang Asli, still live in forested areas with frequent contact with wildlife. Wild boar are ubiquitously found in the forested areas where the Orang Asli communities are located and are commonly hunted as a food supplement. In this study, we aim to determine the tick species parasitizing wild boar from an Orang Asli community, and explore the tick-associated bacterial communities using 16 s rRNA amplicon sequencing on the Ion Torrent PGM™ platform. A total of 72 ticks were collected from three wild boar and were morphologically identified as Haemaphysalis hystricis (n = 32), Dermacentor compactus (n = 15), Amblyomma testudinarium (n = 13), Dermacentor steini (n = 10) and Dermacentor atrosignatus (n = 2). Across all tick samples, 910 bacterial taxa were identified. Although the bacterial communities were not significantly distinct between tick species in beta-diversity analyses, Coxiella, Rickettsia and Francisella were detected at high relative abundance in H. hystricis, D. compactus and D. steini respectively. Many other bacterial genera, including those that have been described in many different tick species, were also identified, including Pseudomonas, Acinetobacter, Staphylococcus and Corynebacterium. Beta-diversity analyses also showed that the bacterial communities were separated based on the animal host from which the ticks were collected from, suggesting that the bacterial communities here may be influenced by the animal skin microflora, host blood or the environment. PCR screening confirmed the presence of Rickettsia sp. related to spotted fever group Rickettsia in some of the ticks. This study provides baseline knowledge of the microbiome of H. hystricis, D. atrosignatus, D. compactus, D. steini and A. testudinarium parasitizing wild boar in this region. The information gained in this study provides the basis to target our efforts in H. hystricis, D. compactus and D. steini for the future investigation of vector competence and the zoonotic potential for the Coxiella, Rickettsia and Francisella detected here, as well as their implications for the risks of tick-borne diseases among the Orang Asli communities.
    Matched MeSH terms: Swine Diseases/microbiology
  9. Mobasseri G, Thong KL, Teh CSJ
    Int Microbiol, 2021 May;24(2):243-250.
    PMID: 33469786 DOI: 10.1007/s10123-021-00161-5
    Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae has been associated with a wide range of infections in humans and animals. The objective of this study was to determine the genomic characteristics of two multiple drug resistant, ESBLs-producing K. pneumoniae strains isolated from a swine in 2013 (KP2013Z28) and a hospitalized patient in 2014 (KP2014C46) in Malaysia. Genomic analyses of the two K. pneumoniae strains indicated the presence of various antimicrobial resistance genes associated with resistance to β-lactams, aminoglycosides, colistin, fluoroquinolones, phenicols, tetracycline, sulfonamides, and trimethoprim, corresponding to the antimicrobial susceptibility profiles of the strains. KP2013Z28 (ST25) and KP2014C46 (ST929) harbored 5 and 2 genomic plasmids, respectively. The phylogenomics of these two Malaysian K. pneumoniae, with other 19 strains around the world was determined based on SNPs analysis. Overall, the strains were resolved into five clusters that comprised of strains with different resistance determinants. This study provided a better understanding of the resistance mechanisms and phylogenetic relatedness of the Malaysian strains with 19 strains isolated worldwide. This study also highlighted the needs to monitor the usage of antibiotics in hospital settings, animal husbandry, and agricultural practices due to the increase of β-lactam, aminoglycosides, tetracycline, and colistin resistance among pathogenic bacteria for better infection control.
    Matched MeSH terms: Swine Diseases/microbiology*
  10. Neela V, Mohd Zafrul A, Mariana NS, van Belkum A, Liew YK, Rad EG
    J Clin Microbiol, 2009 Dec;47(12):4138-40.
    PMID: 19812280 DOI: 10.1128/JCM.01363-09
    Methicillin-resistant Staphylococcus aureus (MRSA) of sequence type 398 (ST398) has frequently been detected in pigs and pig handlers. However, in Malaysia, sampling 360 pigs and 90 pig handlers from 30 farms identified novel ST9-spa type t4358-staphylococcal cassette chromosome mec type V MRSA strains that were found to transiently colonize more than 1% of pigs and 5.5% of pig handlers.
    Matched MeSH terms: Swine Diseases/microbiology
  11. Getachew Y, Hassan L, Zakaria Z, Abdul Aziz S
    Appl Environ Microbiol, 2013 Aug;79(15):4528-33.
    PMID: 23666337 DOI: 10.1128/AEM.00650-13
    Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.
    Matched MeSH terms: Swine Diseases/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links