METHOD: . This study included 126 patients with PTC and 80 controls. RTL in thyroid tissues was measured using quantitative (q) PCR. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression analysis. Kaplan-Meier and Cox regression were used to analyze postsurgical outcomes.
RESULT: . The RTL of patients was significantly shorter than that of controls. A short RTL was significantly correlated with an elevated risk of PTC in patients aged ≥ 55 years, female sex, classic subtype, and tumor size > 2 cm. A short RTL did not affect the overall survival of patients with PTC; however, it was associated with poor survival in patients with tumor size > 2 cm and tumor invasion.
CONCLUSION: . This unique study combines the use of RTL with various clinicopathological features of patients with PTC. In conclusion, RTL is a promising tumor marker that correlates with the clinical characteristics of patients with PTC. Specifically, RTL 2 cm and tumor invasion to predict the risk of PTC development and prognosis of the disease. This study will open new horizon in the use of molecular marker such as RTL for understanding its association with increased cancer risk in patients with different clinicopathological features.
METHODS: To gain a more comprehensive picture on how these markers can modulate BC risk, alone or in conjunction, we performed simultaneous measurements of LTL and mtDNA copy number in up to 570 BC cases and 538 controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. As a first step, we measured LTL and mtDNA copy number in 96 individuals for which a blood sample had been collected twice with an interval of 15 years.
RESULTS: According to the intraclass correlation (ICC), we found very good stability over the time period for both measurements, with ICCs of 0.63 for LTL and 0.60 for mtDNA copy number. In the analysis of the entire study sample, we observed that longer LTL was strongly associated with increased risk of BC (OR 2.71, 95% CI 1.58-4.65, p = 3.07 × 10- 4 for highest vs. lowest quartile; OR 3.20, 95% CI 1.57-6.55, p = 1.41 × 10- 3 as a continuous variable). We did not find any association between mtDNA copy number and BC risk; however, when considering only the functional copies, we observed an increased risk of developing estrogen receptor-positive BC (OR 2.47, 95% CI 1.05-5.80, p = 0.04 for highest vs. lowest quartile).
CONCLUSIONS: We observed a very good correlation between the markers over a period of 15 years. We confirm a role of LTL in BC carcinogenesis and suggest an effect of mtDNA copy number on BC risk.