Displaying all 3 publications

Abstract:
Sort:
  1. Kong PL, Looi LM, Lau TP, Cheah PL
    PLoS ONE, 2016;11(9):e0161720.
    PMID: 27598341 DOI: 10.1371/journal.pone.0161720
    Telomeres shorten with physiological aging but undergo substantial restoration during cancer immortalization. Increasingly, cancer studies utilize the archive of formalin-fixed, paraffin-embedded (FFPE) tissues in diagnostic pathology departments. Conceptually, such studies would be confounded by physiological telomere attrition and loss of DNA integrity from prolonged tissue storage. Our study aimed to investigate these two confounding factors. 145 FFPE tissues of surgically-resected, non-diseased appendixes were retrieved from our pathology archive, from years 2008 to 2014. Cases from 2013 to 2014 were categorized by patient chronological age (0-20 years, 21-40 years, 41-60 years, > 60 years). Telomere lengths of age categories were depicted by telomere/chromosome 2 centromere intensity ratio (TCR) revealed by quantitative fluorescence in situ hybridization. Material from individuals aged 0-20 years from years 2013/2014, 2011/2012, 2009/2010, and 2008 were compared for storage effect. Telomere integrity was assessed by telomere fluorescence intensity (TFI). Epithelial TCRs (mean ± SD) for the respective age groups were 4.84 ± 2.08, 3.64 ± 1.21, 2.03 ± 0.37, and 1.93 ± 0.45, whereas corresponding stromal TCRs were 5.16 ± 2.55, 3.84 ± 1.36, 2.49 ± 1.20, and 2.93 ± 1.24. A trend of inverse correlation with age in both epithelial and stromal tissues is supported by r = -0.69, p < 0.001 and r = -0.42, p < 0.001 respectively. Epithelial TFIs (mean ± SD) of years 2013/2014, 2011/2012, 2009/2010 and 2008 were 852.60 ± 432.46, 353.04 ± 127.12, 209.24 ± 55.57 and 429.22 ± 188.75 respectively. Generally, TFIs reduced with storage duration (r = -0.42, p < 0.001). Our findings agree that age-related telomere attrition occurs in normal somatic tissues, and suggest that an age-based reference can be established for telomere studies on FFPE tissues. We also showed that FFPE tissues archived beyond 2 years are suboptimal for telomere analysis.
    Matched MeSH terms: Telomere Homeostasis/genetics*
  2. Campa D, Barrdahl M, Santoro A, Severi G, Baglietto L, Omichessan H, et al.
    Breast Cancer Res., 2018 04 17;20(1):29.
    PMID: 29665866 DOI: 10.1186/s13058-018-0955-5
    BACKGROUND: Leukocyte telomere length (LTL) and mitochondrial genome (mtDNA) copy number and deletions have been proposed as risk markers for various cancer types, including breast cancer (BC).

    METHODS: To gain a more comprehensive picture on how these markers can modulate BC risk, alone or in conjunction, we performed simultaneous measurements of LTL and mtDNA copy number in up to 570 BC cases and 538 controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. As a first step, we measured LTL and mtDNA copy number in 96 individuals for which a blood sample had been collected twice with an interval of 15 years.

    RESULTS: According to the intraclass correlation (ICC), we found very good stability over the time period for both measurements, with ICCs of 0.63 for LTL and 0.60 for mtDNA copy number. In the analysis of the entire study sample, we observed that longer LTL was strongly associated with increased risk of BC (OR 2.71, 95% CI 1.58-4.65, p = 3.07 × 10- 4 for highest vs. lowest quartile; OR 3.20, 95% CI 1.57-6.55, p = 1.41 × 10- 3 as a continuous variable). We did not find any association between mtDNA copy number and BC risk; however, when considering only the functional copies, we observed an increased risk of developing estrogen receptor-positive BC (OR 2.47, 95% CI 1.05-5.80, p = 0.04 for highest vs. lowest quartile).

    CONCLUSIONS: We observed a very good correlation between the markers over a period of 15 years. We confirm a role of LTL in BC carcinogenesis and suggest an effect of mtDNA copy number on BC risk.

    Matched MeSH terms: Telomere Homeostasis/genetics*
  3. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al.
    Nat. Genet., 2017 Oct;49(10):1529-1538.
    PMID: 28805828 DOI: 10.1038/ng.3933
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
    Matched MeSH terms: Telomere Homeostasis/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links