Displaying all 7 publications

Abstract:
Sort:
  1. Adam M, Ng EYK, Tan JH, Heng ML, Tong JWK, Acharya UR
    Comput Biol Med, 2017 12 01;91:326-336.
    PMID: 29121540 DOI: 10.1016/j.compbiomed.2017.10.030
    Diabetes mellitus (DM) is a chronic metabolic disorder that requires regular medical care to prevent severe complications. The elevated blood glucose level affects the eyes, blood vessels, nerves, heart, and kidneys after the onset. The affected blood vessels (usually due to atherosclerosis) may lead to insufficient blood circulation particularly in the lower extremities and nerve damage (neuropathy), which can result in serious foot complications. Hence, an early detection and treatment can prevent foot complications such as ulcerations and amputations. Clinicians often assess the diabetic foot for sensory deficits with clinical tools, and the resulting foot severity is often manually evaluated. The infrared thermography is a fast, nonintrusive and non-contact method which allows the visualization of foot plantar temperature distribution. Several studies have proposed infrared thermography-based computer aided diagnosis (CAD) methods for diabetic foot. Among them, the asymmetric temperature analysis method is more superior, as it is easy to implement, and yielded satisfactory results in most of the studies. In this paper, the diabetic foot, its pathophysiology, conventional assessments methods, infrared thermography and the different infrared thermography-based CAD analysis methods are reviewed.
    Matched MeSH terms: Thermography/methods*
  2. Kirimtat A, Krejcar O, Selamat A, Herrera-Viedma E
    BMC Bioinformatics, 2020 Mar 11;21(Suppl 2):88.
    PMID: 32164529 DOI: 10.1186/s12859-020-3355-7
    BACKGROUND: In biomedicine, infrared thermography is the most promising technique among other conventional methods for revealing the differences in skin temperature, resulting from the irregular temperature dispersion, which is the significant signaling of diseases and disorders in human body. Given the process of detecting emitted thermal radiation of human body temperature by infrared imaging, we, in this study, present the current utility of thermal camera models namely FLIR and SEEK in biomedical applications as an extension of our previous article.

    RESULTS: The most significant result is the differences between image qualities of the thermograms captured by thermal camera models. In other words, the image quality of the thermal images in FLIR One is higher than SEEK Compact PRO. However, the thermal images of FLIR One are noisier than SEEK Compact PRO since the thermal resolution of FLIR One is 160 × 120 while it is 320 × 240 in SEEK Compact PRO.

    CONCLUSION: Detecting and revealing the inhomogeneous temperature distribution on the injured toe of the subject, we, in this paper, analyzed the imaging results of two different smartphone-based thermal camera models by making comparison among various thermograms. Utilizing the feasibility of the proposed method for faster and comparative diagnosis in biomedical problems is the main contribution of this study.

    Matched MeSH terms: Thermography/methods*
  3. Wahab AA, Salim MI, Ahamat MA, Manaf NA, Yunus J, Lai KW
    Med Biol Eng Comput, 2016 Sep;54(9):1363-73.
    PMID: 26463520 DOI: 10.1007/s11517-015-1403-7
    Breast cancer is the most common cancer among women globally, and the number of young women diagnosed with this disease is gradually increasing over the years. Mammography is the current gold-standard technique although it is known to be less sensitive in detecting tumors in woman with dense breast tissue. Detecting an early-stage tumor in young women is very crucial for better survival chance and treatment. The thermography technique has the capability to provide an additional functional information on physiological changes to mammography by describing thermal and vascular properties of the tissues. Studies on breast thermography have been carried out to improve the accuracy level of the thermography technique in various perspectives. However, the limitation of gathering women affected by cancer in different age groups had necessitated this comprehensive study which is aimed to investigate the effect of different density levels on the surface temperature distribution profile of the breast models. These models, namely extremely dense (ED), heterogeneously dense (HD), scattered fibroglandular (SF), and predominantly fatty (PF), with embedded tumors were developed using the finite element method. A conventional Pennes' bioheat model was used to perform the numerical simulation on different case studies, and the results obtained were then compared using a hypothesis statistical analysis method to the reference breast model developed previously. The results obtained show that ED, SF, and PF breast models had significant mean differences in surface temperature profile with a p value <0.025, while HD breast model data pair agreed with the null hypothesis formulated due to the comparable tissue composition percentage to the reference model. The findings suggested that various breast density levels should be considered as a contributing factor to the surface thermal distribution profile alteration in both breast cancer detection and analysis when using the thermography technique.
    Matched MeSH terms: Thermography/methods*
  4. Jumail A, Liew TS, Salgado-Lynn M, Fornace KM, Stark DJ
    Primates, 2021 Jan;62(1):143-151.
    PMID: 32572697 DOI: 10.1007/s10329-020-00837-y
    A number of primate census techniques have been developed over the past half-century, each of which have advantages and disadvantages in terms of resources required by researchers (e.g., time and costs), availability of technologies, and effectiveness in different habitat types. This study aims to explore the effectiveness of a thermal imaging technique to estimate the group size of different primate species populations in a degraded riparian forest in the Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah. We compared this survey technique to the conventional visual counting method along the riverbank. For 38 days, a total of 138 primate groups were observed by thermal camera and visually throughout the study. Optimal conditions for the thermal camera were clear weather, not more than 100 m distance from the observer to the targeted area, boat speed ranging between 5 and 12 km/h, and early morning between 04:30 and 05:30 am. The limitations of the thermal cameras include the inability to identify individual species, sexes, age classes, and also to discern between animals closely aggregated (i.e., mothers with attached infants). Despite these limitations with the thermal camera technique, 1.78 times more primates were detected than counting by eye (p 
    Matched MeSH terms: Thermography/methods
  5. Tattersall GJ, Danner RM, Chaves JA, Levesque DL
    J Therm Biol, 2020 Jul;91:102611.
    PMID: 32716861 DOI: 10.1016/j.jtherbio.2020.102611
    Infrared thermal imaging is a passive imaging technique that captures the emitted radiation from an object to estimate surface temperature, often for inference of heat transfer. Infrared thermal imaging offers the potential to detect movement without the challenges of glare, shadows, or changes in lighting associated with visual digital imaging or active infrared imaging. In this paper, we employ a frame subtraction algorithm for extracting the pixel-by-pixel relative change in signal from a fixed focus video file, tailored for use with thermal imaging videos. By summing the absolute differences across an entire video, we are able to assign quantitative activity assessments to thermal imaging data for comparison with simultaneous recordings of metabolic rates. We tested the accuracy and limits of this approach by analyzing movement of a metronome and provide an example application of the approach to a study of Darwin's finches. In principle, this "Difference Imaging Thermography" (DIT) would allow for activity data to be standardized to energetic measurements and could be applied to any radiometric imaging system.
    Matched MeSH terms: Thermography/methods*
  6. Dzarr AA, Kamal M, Baba AA
    Eur J Oncol Nurs, 2009 Sep;13(4):250-4.
    PMID: 19386547 DOI: 10.1016/j.ejon.2009.03.006
    This study assessed the agreement between infrared tympanic membrane (TM), axillary, corrected axillary (+0.5 degrees C), oral, and corrected oral (+0.3 degrees C) to rectal thermometry as reference standard in neutropenic adults. The sensitivity and specificity of the mentioned thermometries in detecting rectal fever (> or =38 degrees C) were also analysed.
    Matched MeSH terms: Thermography/methods*
  7. Vairavan R, Abdullah O, Retnasamy PB, Sauli Z, Shahimin MM, Retnasamy V
    Curr Med Imaging Rev, 2019;15(2):85-121.
    PMID: 31975658 DOI: 10.2174/1573405613666170912115617
    BACKGROUND: Breast carcinoma is a life threatening disease that accounts for 25.1% of all carcinoma among women worldwide. Early detection of the disease enhances the chance for survival.

    DISCUSSION: This paper presents comprehensive report on breast carcinoma disease and its modalities available for detection and diagnosis, as it delves into the screening and detection modalities with special focus placed on the non-invasive techniques and its recent advancement work done, as well as a proposal on a novel method for the application of early breast carcinoma detection.

    CONCLUSION: This paper aims to serve as a foundation guidance for the reader to attain bird's eye understanding on breast carcinoma disease and its current non-invasive modalities.

    Matched MeSH terms: Thermography/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links