Displaying all 9 publications

Abstract:
Sort:
  1. Wong XK, Yeong KY
    Curr Med Chem, 2021 Oct 27;28(34):7076-7121.
    PMID: 33588718 DOI: 10.2174/0929867328666210215113828
    Nucleobases represent key structural motifs in biologically active molecules, including synthetic and natural products. Molecular modifications made on nucleobases or their isolation from natural sources are being widely investigated for the development of drugs with improved potency for the treatment of different diseases, such as cancer, as well as viral and bacterial infections. This review article focuses on the nucleobase analogue drug developments of the past 20 years (2000-2020). Various pharmacological and medicinal aspects of nucleobases and their analogues are discussed. The current state and limitations are also highlighted.
    Matched MeSH terms: Thymine
  2. Ainoon O, Joyce J, Boo NY, Cheong SK, Hamidah NH
    Malays J Pathol, 1995 Dec;17(2):61-5.
    PMID: 8935127
    G6PD deficiency is the most common human enzymopathy and affects 200 million people worldwide. To date more than 400 biochemical variants and at least 60 different point mutations in the G6PD locus have been discovered. In Malaysia the overall incidence of G6PD deficiency among males is 3.1%, being more prevalent among the Chinese and Malays and less common among the Indians. As part of our initial effort to characterise G6PD deficiency in the Malaysian population, we investigated 18 G6PD deficient Chinese male neonates for the G6PD mutation G-->T at nt 1376, a common mutation seen among the Chinese in Taiwan and mainland China. The mutation was detected by a PCR-based technique using primers that artificially create a site for restriction enzyme Xho I. We found 61% (11 out of 18) of the Chinese G6PD deficient male neonates positive for this mutation. Study of enzyme electrophoretic mobility in 7 of the cases positive for this mutation revealed three different patterns of mobility. 107% (5 out of 7), 103% (1 out of 7) and 100% (1 out of 7). This study shows that mutation G-->T at nt 1376 is a common allele causing G6PD deficiency in Malaysians of Chinese origin. The finding of different patterns of electrophoretic mobility among the 7 cases positive for 1376 G-->T mutation supports the notion that diverse biochemical variants may share the same mutation.
    Matched MeSH terms: Thymine*
  3. Sim SM, Hoggard PG, Sales SD, Phiboonbanakit D, Hart CA, Back DJ
    AIDS Res Hum Retroviruses, 1998 Dec 20;14(18):1661-7.
    PMID: 9870320
    Zidovudine (ZDV) is converted to its active triphosphate (ZDVTP) by intracellular kinases. The intermediate ZDV monophosphate (ZDVMP) is believed to play a major role in ZDV toxicity. Manipulation of ZDV phosphorylation is a possible therapeutic strategy for altering the risk-benefit ratio. Here we investigate whether combining RBV with ZDV is able to modulate efficacy and toxicity of ZDV. We have measured the intracellular activation of ZDV (0.3 microM) in the absence and presence of ribavirin (RBV; 2 and 20 microM) in Molt 4 and U937 cells. MTT cytotoxicity of ZDV (10-1000 microM) was also measured with and without RBV (2 microM) in Molt 4 and U937 cells. Measurement of endogenous deoxythymidine triphosphate (dTTP) allowed investigation of the dTTP/ZDVTP ratio. The antiviral efficacy of ZDV in combination with RBV (2 microM) was assessed by HIV p24 antigen measurements. In the presence of RBV (2 and 20 microM) a decrease in total ZDV phosphates was observed, owing mainly to an effect primarily on ZDVMP rather than the active ZDVTP. RBV also increased endogenous dTTP pools in both cell types, resulting in an increase in the dTTP/ZDVTP ratio. ZDV alone significantly reduced p24 antigen production, with an IC50 of 0.34 microM. Addition of RBV increased the IC50 approximately fivefold (1.52 microM). However, at higher concentrations of ZDV (10 and 100 microM) the antagonistic effect of RBV (2 microM) on ZDV was lost. The RBV-mediated decrease in ZDVMP may explain the reduction in ZDV toxicity when combined with RBV (2 microM). Cytotoxicity of ZDV was reduced in the presence of RBV (2 microM) at all concentrations in both cell lines, probably owing to saturation of ZDVTP formation. The interaction of ZDV and RBV is concentration dependent.
    Matched MeSH terms: Thymine Nucleotides/metabolism
  4. Wolfe AD, Hahn FE
    Naturwissenschaften, 1975 Feb;62(2):99.
    PMID: 1683
    Matched MeSH terms: Thymine Nucleotides/metabolism
  5. Ng KL, Khor SM
    Anal Chem, 2017 09 19;89(18):10004-10012.
    PMID: 28845664 DOI: 10.1021/acs.analchem.7b02432
    Guanine (G), adenine (A), thymine (T), and cytosine (C) are the four basic constituents of DNA. Studies on DNA composition have focused especially on DNA damage and genotoxicity. However, the development of a rapid, simple, and multiplex method for the simultaneous measurement of the four DNA bases remains a challenge. In this study, we describe a graphite-based nanocomposite electrode (Au-rGO/MWCNT/graphite) that uses a simple electro-co-deposition approach. We successfully applied the developed sensor for multiplex detection of G, A, T, and C, using square-wave voltammetry. The sensor was tested using real animal and plant DNA samples in which the hydrolysis of T and C could be achieved with 8 mol L-1 of acid. The electrochemical sensor exhibited excellent sensitivity (G = 178.8 nA/μg mL-1, A = 92.9 nA/μg mL-1, T = 1.4 nA/μg mL-1, and C = 15.1 9 nA/μg mL-1), low limit of detection (G, A = 0.5 μg mL-1; T, C = 1.0 μg mL-1), and high selectivity in the presence of common interfering factors from biological matrixes. The reliability of the established method was assessed by method validation and comparison with the ultraperformance liquid chromatography technique, and a correlation of 103.7% was achieved.
    Matched MeSH terms: Thymine/analysis*
  6. Arul P, Huang ST, Gowthaman NSK, Shankar S
    Mikrochim Acta, 2021 Oct 01;188(10):358.
    PMID: 34596766 DOI: 10.1007/s00604-021-05021-7
    An efficient electrochemical biosensor has been developed for the simultaneous evaluation of DNA bases using AgNPs-embedded covalent organic framework (COF). The COF (p-Phenylenediamine and terephthalaldehyde) was synthesized by reflux (DMF; 150 °C; 12 h) and the nanoparticles were embedded from the aqueous solutions of AgNO3 and NaBH4. The nanocomposite-modified COF was confirmed by spectral, microscopic, and electrochemical techniques. The nanocomposite material was deposited on a glassy carbon electrode (GCE) and the redox behavior of AgNPs was confirmed by cyclic voltammetry. The electrocatalytic activities of DNA bases were analyzed by differential pulse voltammetry (DPV) in a physiological environment (PBS; pH = 7.0) based on simple and easy-to-use electrocatalyst. The AgNPs-COF/GCE showed well-defined anodic peak currents for the bases guanine (+ 0.63 V vs. Ag/AgCl), adenine (+ 0.89 V vs. Ag/AgCl), thymine (+ 1.10 V vs. Ag/AgCl), and cytosine (+ 1.26 V vs. Ag/AgCl) in a mixture as well as individuals with respect to the conventional, COF, and AgNPs/GCEs. The AgNPs-COF/GCE showed linear concentration range of DNA bases from 0.2-1000 µM (guanine; (G)), 0.1-500 µM (adenine (A)), 0.25-250 µM (thymine (T)) and 0.15-500 µM (cytosine (C)) and LOD of 0.043, 0.056, 0.062, and 0.051 µM (S/N = 3), respectively. The developed sensor showed reasonable selectivity, reproducibility (RSD = 1.53 ± 0.04%-2.58 ± 0.02% (n = 3)), and stability (RSD = 1.22 ± 0.06%-2.15 ± 0.04%; n = 3) over 5 days of storage) for DNA bases. Finally, AgNPs-COF/GCE was used for the determination of DNA bases in human blood serum, urine and saliva samples with good recoveries (98.60-99.11%, 97.80-99.21%, and 98.69-99.74%, respectively).
    Matched MeSH terms: Thymine/chemistry
  7. Hee CS, Gun SC, Naidu R, Somnath SD, Radhakrishnan AK
    Int J Rheum Dis, 2008;11(2):148-154.
    DOI: 10.1111/j.1756-185X.2008.00350.x
    Aim: Recent studies have shown that single nucleotide polymorphisms (SNPs) have been identified within the promoter of the human interleukin-10 (IL-10) gene may participate in the pathogenesis of systemic lupus erythematosus (SLE) and may be related to disease activity. This is a pilot study that investigated the allelic and genotype frequencies of three SNPs in the human IL-10 gene promoter [rs1800896 (position: -1082G > A), rs1800871 (position: -824C > T) and rs1800872 (position: -597C > A)]among Malaysian SLE patients and normal subjects. Methods: Blood was drawn from 44 SLE patients and 44 age- and sex-matched healthy control subjects for DNA extraction. The SNPs were identified using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: There was no significant difference in the genotype and allele frequencies between the SLE patients and control subjects. A statistically significant difference was detected in the haplotype frequencies between the patients and controls (P = 0.004). Conclusions: There is a significant difference in the haplotype frequencies between the SLE patients and controls; the SNPs in the human IL-10 gene promoter could play an important role in the pathogenesis of SLE. © 2008 Asia Pacific League of Associations for Rheumatology and Blackwell Publishing Asia Pty Ltd.
    Matched MeSH terms: Thymine
  8. Pathan RK, Biswas M, Khandaker MU
    Chaos Solitons Fractals, 2020 Sep;138:110018.
    PMID: 32565626 DOI: 10.1016/j.chaos.2020.110018
    SARS-CoV-2, a novel coronavirus mostly known as COVID-19 has created a global pandemic. The world is now immobilized by this infectious RNA virus. As of June 15, already more than 7.9 million people have been infected and 432k people died. This RNA virus has the ability to do the mutation in the human body. Accurate determination of mutation rates is essential to comprehend the evolution of this virus and to determine the risk of emergent infectious disease. This study explores the mutation rate of the whole genomic sequence gathered from the patient's dataset of different countries. The collected dataset is processed to determine the nucleotide mutation and codon mutation separately. Furthermore, based on the size of the dataset, the determined mutation rate is categorized for four different regions: China, Australia, the United States, and the rest of the World. It has been found that a huge amount of Thymine (T) and Adenine (A) are mutated to other nucleotides for all regions, but codons are not frequently mutating like nucleotides. A recurrent neural network-based Long Short Term Memory (LSTM) model has been applied to predict the future mutation rate of this virus. The LSTM model gives Root Mean Square Error (RMSE) of 0.06 in testing and 0.04 in training, which is an optimized value. Using this train and testing process, the nucleotide mutation rate of 400th patient in future time has been predicted. About 0.1% increment in mutation rate is found for mutating of nucleotides from T to C and G, C to G and G to T. While a decrement of 0.1% is seen for mutating of T to A, and A to C. It is found that this model can be used to predict day basis mutation rates if more patient data is available in updated time.
    Matched MeSH terms: Thymine
  9. Gopalai AA, Lim SY, Aziz ZA, Lim SK, Tan LP, Chong YB, et al.
    Ann Acad Med Singap, 2013 May;42(5):237-40.
    PMID: 23771111
    INTRODUCTION: The G2385R and R1628P LRRK2 gene variants have been associated with an increased risk of Parkinson's disease (PD) in the Asian population. Recently, a new LRRK2 gene variant, A419V, was reported to be a third risk variant for PD in Asian patients. Our objective was to investigate this finding in our cohort of Asian subjects.

    MATERIALS AND METHODS: Eight hundred and twenty-eight subjects (404 PD patients, and 424 age and gender-matched control subjects without neurological disorders) were recruited. Genotyping was done by Taqman® allelic discrimination assay on an Applied Biosystems 7500 Fast Real-Time PCR machine.

    RESULTS: The heterozygous A419V genotype was found in only 1 patient with PD, compared to 3 in the control group (0.4% vs 1.3%), giving an odds ratio of 0.35 (95% confidence interval (CI), 0.01 to 3.79; P = 0.624).

    CONCLUSION: A419V is not an important LRRK2 risk variant in our Asian cohort of patients with PD. Our data are further supported by a literature review which showed that 4 out of 6 published studies reported a negative association of this variant in PD.

    Matched MeSH terms: Thymine
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links