Toxoplasma gondii is an intra-cellular parasite that infects humans through vertical and horizontal transmission. The cysts remain dormant in the brain of infected humans and can reactivate in immunocompromised hosts resulting in acute toxoplasmic encephalitis which may be fatal. We determined the onset and progression of brain cysts generation in a mouse model following acute toxoplasmosis as well as the ability of brain cysts to reactivate in vitro. Male Balb/c mice, (uninfected control group, n = 10) were infected orally (study group, n = 50) with 1000 tachyzoites of T. gondii (ME49 strain) and euthanized at 1, 2, 4, 8 and 16 weeks post infection. Brain tissue was harvested, homogenized, stained and the number of brain cysts counted. Aliquots of brain homogenate with cysts were cultured in vitro with confluent Vero cells and the number of cysts and tachyzoites counted after 1 week. Brain cysts but not tachyzoites were detected at week 2 post infection and reached a plateau by week 4. In vitro Vero cells culture showed similar pattern for cysts and tachyzoites and reactivation of cyst in vitro was not influenced by the age of the brain cysts.
Matched MeSH terms: Toxoplasma/growth & development
Thirty in vitro serial passages of Toxoplasman gondii cultures in Vero cell line performed once in every five days had a mean increase in parasite count of 74.4 +/- 14.8 times from that of initial counts. Long term cultures in Vero cell line did not alter the virulence of the parasite. The good correlation (r = 0.99) between the IFA titer and ELISA OD values using the parasite antigens from in vitro sources indicates that long term maintenance of T. gondii in culture does not affect significantly the ability to recognize antibodies to surface and soluble antigens. The results also show that soluble antigens containing host cells can be directly used for immunodiagnostic purposes without purification. The in vitro maintenance of T. gondii is safer and cheaper when compared to the in vivo method.