Displaying all 6 publications

Abstract:
Sort:
  1. Zhang DW, Johnstone SJ, Sauce B, Arns M, Sun L, Jiang H
    PMID: 37257770 DOI: 10.1016/j.pnpbp.2023.110802
    Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.
    Matched MeSH terms: Transcranial Direct Current Stimulation*
  2. Gough N, Brkan L, Subramaniam P, Chiuccariello L, De Petrillo A, Mulsant BH, et al.
    PLoS One, 2020;15(2):e0223029.
    PMID: 32092069 DOI: 10.1371/journal.pone.0223029
    With technological advancements and an aging population, there is growing interest in delivering interventions at home. Transcranial Direct Current Stimulation (tDCS) and Cognitive Remediation (CR) as well as Cognitive Training (CT) have been widely studied, but mainly in laboratories or hospitals. Thus, the objectives of this review are to examine feasibility and the interventions components to support the domiciliary administration of tDCS and CR. We performed a systematic search of electronic databases, websites and reference lists of included articles from the first date available until October 31, 2018. Articles included had to meet the following criteria: original work published in English using human subjects, majority of tDCS or CR intervention administered remotely. A total of 39 studies were identified (16 tDCS, 23 CR/CT, 5 using both tDCS & CT). Four studies were single case studies and two were multiple case studies. The remaining 33 studies had a range of 9-135 participants. Five tDCS and nine CR/CT studies were double blind randomized controlled trials. Most studies focused on schizophrenia (8/39) and multiple sclerosis (8/39). Literature examined suggests the feasibility of delivering tDCS or CR/CT remotely with the support of information and communication technologies.
    Matched MeSH terms: Transcranial Direct Current Stimulation/methods*
  3. Kho SK, Keeble D, Wong HK, Estudillo AJ
    Soc Neurosci, 2023 Dec;18(6):393-406.
    PMID: 37840302 DOI: 10.1080/17470919.2023.2263924
    Successful face recognition is important for social interactions and public security. Although some preliminary evidence suggests that anodal and cathodal transcranial direct current stimulation (tDCS) might modulate own- and other-race face identification, respectively, the findings are largely inconsistent. Hence, we examined the effect of both anodal and cathodal tDCS on the recognition of own- and other-race faces. Ninety participants first completed own- and other-race Cambridge Face Memory Test (CFMT) as baseline measurements. Next, they received either anodal tDCS, cathodal tDCS or sham stimulation and finally they completed alternative versions of the own- and other-race CFMT. No difference in performance, in terms of accuracy and reaction time, for own- and other-race face recognition between anodal tDCS, cathodal tDCS and sham stimulation was found. Our findings cast doubt upon the efficacy of tDCS to modulate performance in face identification tasks.
    Matched MeSH terms: Transcranial Direct Current Stimulation*
  4. Goh HT, Chan HY, Abdul-Latif L
    J Neurol Phys Ther, 2015 Jan;39(1):15-22.
    PMID: 25427033 DOI: 10.1097/NPT.0000000000000064
    Noninvasive brain stimulation, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have gained popularity in the stroke rehabilitation literature. Little is known about the time course and duration of effects of noninvasive brain stimulation on corticospinal excitability in individuals with stroke. We examined the aftereffects of a single session of high-frequency rTMS (5 Hz) and anodal tDCS on corticospinal excitability in the same sample of participants with chronic stroke.
    Matched MeSH terms: Transcranial Direct Current Stimulation*
  5. Wang QM, Cui H, Han SJ, Black-Schaffer R, Volz MS, Lee YT, et al.
    Neurosci Lett, 2014 May 21;569:6-11.
    PMID: 24631567 DOI: 10.1016/j.neulet.2014.03.011
    Noninvasive transcranial direct current stimulation (tDCS) and methylphenidate (MP) are associated with motor recovery after stroke. Based on the potentially complementary mechanisms of these interventions, we examined whether there is an interactive effect between MP and tDCS. In this preliminary study, we randomized subacute stroke subjects to receive tDCS alone, MP alone or combination of tDCS and MP. A blinded rater measured safety, hand function, and cortical excitability before and after treatment. None of the treatments caused any major or severe adverse effects or induced significant differences in cortical excitability. Analysis of variance of gain score, as measured by Purdue pegboard test, showed a significant between-group difference (F(2,6)=12.167, p=0.008). Post hoc analysis showed that the combination treatment effected greater Purdue pegboard gain scores than tDCS alone (p=0.017) or MP alone (p=0.01). Our preliminary data with nine subjects shows an interesting dissociation between motor function improvement and lack of motor corticospinal plasticity changes as indexed by transcranial magnetic stimulation in subacute stroke subjects.
    Matched MeSH terms: Transcranial Direct Current Stimulation*
  6. Zulkifly MFM, Merkohitaj O, Brockmöller J, Paulus W
    Clin Neurophysiol, 2021 06;132(6):1367-1379.
    PMID: 33762129 DOI: 10.1016/j.clinph.2021.01.024
    OBJECTIVE: We examined the effects of caffeine, time of day, and alertness fluctuation on plasticity effects after transcranial alternating current stimulation (tACS) or 25 ms paired associative stimulation (PAS25) in caffeine-naïve and caffeine-adapted subjects.

    METHODS: In two randomised, double-blinded, cross-over or placebo-controlled (caffeine) studies, we measured sixty subjects in eight sessions (n = 30, Male: Female = 1:1 in each study).

    RESULTS: We found caffeine increased motor cortex excitability in caffeine naïve subjects. The aftereffects in caffeine naïve subjects were enhanced and prolonged when combined with PAS 25. Caffeine also increased alertness and the motor evoked potentials (MEPs) were reduced under light deprivation in caffeine consumers both with and without caffeine. In caffeine consumers, the time of day had no effect on tACS-induced plasticity.

    CONCLUSIONS: We conclude that caffeine should be avoided or controlled as confounding factor for brain stimulation protocols. It is also important to keep the brightness constant in all sessions and study groups should not be mixed with caffeine-naïve and caffeine consuming participants.

    SIGNIFICANCE: Caffeine is one of the confounding factors in the plasticity induction studies and it induces different excitability effects in caffeine-naïve and caffeine-adapted subjects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.

    Matched MeSH terms: Transcranial Direct Current Stimulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links