Displaying all 3 publications

Abstract:
Sort:
  1. Sultana SR, Ali A, Ahmad A, Mubeen M, Zia-Ul-Haq M, Ahmad S, et al.
    ScientificWorldJournal, 2014;2014:725326.
    PMID: 25045744 DOI: 10.1155/2014/725326
    For estimation of grain yield in wheat, Normalized Difference Vegetation Index (NDVI) is considered as a potential screening tool. Field experiments were conducted to scrutinize the response of NDVI to yield behavior of different wheat cultivars and nitrogen fertilization at agronomic research area, University of Agriculture Faisalabad (UAF) during the two years 2008-09 and 2009-10. For recording the value of NDVI, Green seeker (Handheld-505) was used. Split plot design was used as experimental model in, keeping four nitrogen rates (N1 = 0 kg ha(-1), N2 = 55 kg ha(-1), N3 = 110 kg ha(-1), and N4 = 220 kg ha(-1)) in main plots and ten wheat cultivars (Bakkhar-2001, Chakwal-50, Chakwal-97, Faisalabad-2008, GA-2002, Inqlab-91, Lasani-2008, Miraj-2008, Sahar-2006, and Shafaq-2006) in subplots with four replications. Impact of nitrogen and difference between cultivars were forecasted through NDVI. The results suggested that nitrogen treatment N4 (220 kg ha(-1)) and cultivar Faisalabad-2008 gave maximum NDVI value (0.85) at grain filling stage among all treatments. The correlation among NDVI at booting, grain filling, and maturity stages with grain yield was positive (R(2) = 0.90; R(2) = 0.90; R(2) = 0.95), respectively. So, booting, grain filling, and maturity can be good depictive stages during mid and later growth stages of wheat crop under agroclimatic conditions of Faisalabad and under similar other wheat growing environments in the country.
    Matched MeSH terms: Triticum/drug effects
  2. Hossain MA, Ashrafuzzaman M, Hossain AK, Ismail MR, Koyama H
    ScientificWorldJournal, 2014;2014:457187.
    PMID: 24701169 DOI: 10.1155/2014/457187
    Aluminum (Al) sensitive wheat cultivar kalyansona was grown for 14 d in a range of Ca solution (125, 625, and 2500 μM) plus other nutrients without Al. At 14 d after Ca treatment, half of these plants were harvested (H1), and the rest of the plants were exposed to 100 μM Al for additional 6 d and harvested (H2). Severe Al injury was found only in the plants with the lowest supply of Ca before Al treatment. Aluminum concentration in the apoplastic fluid was very high at 125 μM Ca probably because the plasma membrane of some of the cells was destroyed due to the attack of 100 μM Al. Aluminum content in roots decreased with increasing supply of Ca before Al treatment. Calcium content decreased drastically at harvest (H2) in the plants with 100 μM Al. Under Al stress conditions, the plant responded to Al in different ways due to not only the different Ca supply but also the variation of Ca content in the plant tissues. Actually, the plants having the largest Ca content in the roots before Al treatment can receive less Al injury during Al treatment. To substantiate this idea, a companion study was conducted to investigate the effects of 2500 μM Ca supply during, before, and after 100 μM Al treatment on root growth. The results indicated clearly that exogenous Ca supply before Al treatment is able to alleviate Al injury but less effective than Ca supply during Al treatment.
    Matched MeSH terms: Triticum/drug effects*
  3. Borikhonov B, Berdimurodov E, Kholikov T, Nik WBW, Katin KP, Demir M, et al.
    J Mol Model, 2024 Oct 02;30(11):359.
    PMID: 39356293 DOI: 10.1007/s00894-024-06157-y
    CONTEXT: This study addresses the development of sustainable pyridinium ionic liquids (ILs) because of their potential applications in agriculture and pharmaceuticals. Pyridinium-based ILs are known for their low melting points, high thermal stability, and moderate solvation properties. We synthesized three novel pyridinium-based ILs: 1-(2-(isopentyloxy)-2-oxoethyl)pyridin-1-ium chloride, 1-(2-(hexyloxy)-2-oxoethyl)pyridin-1-ium chloride, and 1-(2-(benzyloxy)-2-oxoethyl)pyridin-1-ium chloride. The biological activities of these compounds were evaluated through plant growth promotion, herbicidal, and insecticidal assays. Our results show that the benzyloxy derivative significantly enhances wheat and cucumber growth, whereas the isopentyloxy compound has potent herbicidal effects. Computational methods, including DFT calculations and molecular docking, were applied to understand the structure‒activity relationships (SARs) and mechanisms of action.

    METHODS: The computational techniques involved dispersion-corrected density functional theory (DFT) with the B3LYP functional and the 6-311G** basis set. Grimme's D3 corrections were included to account for dispersion interactions. The calculations were performed via GAMESS-US software. Quantum descriptors of reactivity, such as ionization potential, electron affinity, chemical potential, and electrophilicity index, were derived from the HOMO and LUMO energies. Molecular docking studies were conducted via the CB-Dock server via AutoDock Vina software to predict binding affinities to cancer-related proteins. Petra/Osiris/Molinspiration (POM) analysis was used to predict the drug likeness and other pharmaceutical properties of the synthesized ILs.

    Matched MeSH terms: Triticum/drug effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links