Rice tungro spherical virus (RTSV) has an RNA genome of more than 12 kb with various features which classify it as a plant picornavirus. The capsid comprises three coat protein (CP) species, CP1, CP2 and CP3, with predicted molecular masses of 22.5, 22.0 and 33 kDa, respectively, which are cleaved from a polyprotein. In order to obtain information on the properties of these proteins, each was expressed in E. coli, purified as a fusion to the maltose-binding protein and used for raising a polyclonal antiserum. CP1, CP2 and CP3 with the expected molecular masses were detected specifically in virus preparations. CP3 is probably the major antigenic determinant on the surface of RTSV particles, as was shown by ELISA, Western blotting and immunogold electron microscopy using antisera obtained against whole virus particles and to each CP separately. In some cases, especially in crude extracts, CP3 antiserum detected several other proteins (40-42 kDa), which could be products of CP3 post-translational modification. No serological differences were detected between the three CPs from isolates from the Philippines, Thailand, Malaysia and India. The CP3-related 40-42 kDa proteins of the Indian RTSV isolate have a slightly higher electrophoretic mobility (42-44 kDa) and a different response to cellulolytic enzyme preparations, which allows them to be differentiated from south-east Asian isolates.
Precipitating antibodies to an insect pathogenic RNA virus of Darna trima from East Malaysia have been found in a small percentage of human sera from several different groups of persons in West Malaysia and the United Kingdom. No associated illness was identified. The results suggest that an antigenically related virus or viruses are present in the environment that may be associated with symptomless or inapparent infections in man.
Tetherin, an interferon-inducible gene was first discovered to be an antiviral factor in 2008. A vast range of viruses, such as influenza A virus (IAV), dengue virus, Ebola virus, HIV, and RSV, have been reported to be susceptible to the antiviral activity of tetherin. Multiple reports have been published encompassing the role of tetherin in the IAV life cycle. To date, nine reports have been published regarding the role of tetherin in the IAV life cycle, with four reports supporting tetherin as an antiviral factor while five other reports suggesting no effect. To this end, this review summarizes the list of viruses currently known to be inhibited by tetherin and describes mechanisms used by viruses to overcome the antiviral potential of tetherin. Further, using IAV as disease model, we provide existing evidence in favor and against tetherin being considered as an antiviral candidate. Subsequent analysis of the experimental procedures across IAV-tetherin published reports revealed that the experimental setup (ie, cell lines, transfection reagents, and multiplicity of infection), strain-specific activity of NS1, and differing roles of NS1 in different cell lines may add up to the contributing factors leading to the discrepancies observed.
Recently, the risk of viral infection has dramatically increased owing to changes in human ecology such as global warming and an increased geographical movement of people and goods. However, the efficacy of vaccines and remedies for infectious diseases is limited by the high mutation rates of viruses, especially, RNA viruses. Here, we comprehensively review the effectiveness of several probiotics and paraprobiotics (sterilized probiotics) for the prevention or treatment of virally-induced infectious diseases. We discuss the unique roles of these agents in modulating the cross-talk between commensal bacteria and the mucosal immune system. In addition, we provide an overview of the unique mechanism by which viruses are eliminated through the stimulation of type 1 interferon production by probiotics and paraprobiotics via the activation of dendritic cells. Although further detailed research is necessary in the future, probiotics and/or paraprobiotics are expected to be among the rational adjunctive options for the treatment of various viral diseases.
The 11th International Oncolytic Virus Conference (IOVC) was held from April 9-12, 2018 in Oxford, UK. This is part of the high-profile academic-led series of meetings that was started back in 2002 by Steve Russell and John Bell, with most of the previous meetings being held in North America (often in Banff). The conference brought together many of the major players in oncolytic virotherapy from all over the world, addressing all stages of research and development-from aspects of basic science and cellular immunology all the way through to early- and late-phase clinical trials. The meeting welcomed 352 delegates from 24 countries. The top seven delegate countries, namely, the UK, US, Canada, The Netherlands, Germany, Japan and South Korea, contributed 291 delegates while smaller numbers coming from Australia, Austria, Bulgaria, China, Finland, France, Iraq, Ireland, Israel, Italy, Latvia, Malaysia, Poland, Slovenia, Spain, Sweden and Switzerland. Academics comprised about half of the attendees, industry 30% and students 20%. The next IOVC is scheduled to be held on Vancouver Island in autumn 2019. Here we share brief summaries of the oral presentations from invited speakers and proffered papers in the different subtopics presented at IOVC 2018.
Newcastle disease virus (NDV) is an avian virus that causes deadly infection to over 250 species of birds, including domestic and wild-type, thus resulting in substantial losses to the poultry industry worldwide. Many reports have demonstrated the oncolytic effect of NDV towards human tumor cells. The interesting aspect of NDV is its ability to selectively replicate in cancer cells. Some of the studies have undergone human clinical trials, and favorable results were obtained. Therefore, NDV strains can be the potential therapeutic agent in cancer therapy. However, investigation on the therapeutic perspectives of NDV, especially human immunological effects, is still ongoing. This paper provides an overview of the current studies on the cytotoxic and anticancer effect of NDV via direct oncolysis effects or immune stimulation. Safety of NDV strains applied for cancer immunotherapy is also discussed in this paper.
Two different preparations of monoclonal antibodies developed against respiratory viruses have been evaluated by the immunofluorescence antibody technique. The Chemicon monoclonal antibodies were found to be more efficient at picking up positive specimens with a high sensitivity and specificity than Imagen monoclonal antibodies. However, the overall concordance rate of the monoclonal antibodies was 92.3%-100%. Generally, when compared with cell culture isolation, the immunofluorescence antibody technique was found to be more sensitive. The high quality of the Chemicon monoclonal antibodies contribute to their value in providing definitive diagnosis, within a few hours of specimen collection, thus allowing early management of patients, their contacts and control of hospital infection.
Serological surveys have been widely used in South-East Asia to determine the presence and activity of arboviruses. The haemagglutination-inhibition test has been most frequently employed but complement-fixation and neutralization tests have also been used in some investigations.Although virus isolations provide the most conclusive evidence, they can be carried out in a few specialized centres only, and serological surveys are very important for studying the distribution of arboviruses.The surveys have shown that group B arboviruses (principally all four types of dengue, Japanese encephalitis, and West Nile) are widely prevalent. Dengue and Japanese encephalitis viruses are more widespread than West Nile virus, which was not known previously to extend east of India although recent survyes have shown that its range extends to Burma. Japanese encephalitis is frequent in most of South-East Asia but in India is found mainly in eastern and south-eastern parts of the country. Kyasanur Forest disease (KFD) and Langat viruses are the only tick-borne group B arboviruses definitely known to occur in the region, the former in India, the latter in Malaysia. KFD virus has been isolated only from a small focus in Mysore, although human and animal sera containing neutralizing antibodies to this virus have been found sporadically in widely scattered areas. Among the group A arboviruses, chikungunya and Sindbis have been detected in serological surveys, but the former has not yet been found in Malaysia.
The vp28 gene encoding an envelope protein (28 kDa) of white spot syndrome virus (WSSV) was amplified from WSSV-infected tiger shrimp that originated from Malaysia. Recombinant VP28 protein (r-28) was expressed in Escherichia coli and used as an antigen for preparation of monoclonal antibodies (MAbs). Three murine MAbs (6F6, 6H4 and 9C10) that were screened by r-28 antigen-based enzyme-linked immunosorbent assay (ELISA) were also able to recognize viral VP28 protein as well as r-28 on Western blot. Three non-overlapping epitopes of VP28 protein were determined using the MAbs in competitive ELISA; thus, an antigen-capture ELISA (Ac-ELISA) was developed by virtue of these MAbs. Ac-ELISA can differentiate WSSV-infected shrimp from uninfected shrimp and was further confirmed by a polymerase chain reaction (PCR) and Western blot. Approximately 400 pg of purified WSSV sample and 20 pg of r-28 could be detected by Ac-ELISA, which is comparable in sensitivity to PCR assay but more sensitive than Western blot in the detection of purified virus. Hemolymph and tissue homogenate samples collected from a shrimp farm in Malaysia during December 2000 and July 2001 were also detected by Ac-ELISA and PCR with corroborating results.