We investigated relationship of arsenicosis symptoms with total blood arsenic (BAs) and serum albumin (SAlb) of residents in the Mekong River basin of Cambodia. We found that arsenicosis patients had significantly higher BAs and lower SAlb than asymptomatic villagers (Mann-Whitney U test, p<0.01). Arsenicosis symptoms were found to be 76.4% (1.764 times) more likely to develop among individuals having an SAlb≤44.3gL(-1) than among those who had an SAlb>44.3gL(-1) (OR=1.764, 95% CI=0.999-3.114) and 117.6% (2.176 times) as likely to occur among those with BAs>5.73µgL(-1) than for those having BAs≤5.73µgL(-1) (OR=2.176, 95% CI=1.223-3.872). Furthermore, a significant negative correlation was also found between BAs and SAlb (rs (199)=-0.354, p<0.0001). As such, this study suggests that people with low SAlb and/or high BAs are likely to rapidly develop arsenicosis symptoms.
Matched MeSH terms: Water Pollutants, Chemical/urine
A new salting-out assisted liquid-liquid extraction (SALLE) sample preparation method for the determination of the polar anti-diabetic biguanide drugs (metformin, buformin and phenformin) in blood plasma, urine and lake water samples were developed. The SALLE was performed by mixing samples (plasma (0.2mL), urine or lake water (1.0mL)) with acetonitrile (0.4mL for plasma, 0.5mL for urine or lake water), sodium hydroxide powder was then added for the phase separation. The effects of type of salting-out reagent, type of extraction solvent, volumes of acetonitrile and sample, amount of sodium hydroxide, vortexing and centrifugation times on the extraction efficiency were investigated. The upper layer, containing the biguanides, was directly injected into a HPLC unit using ZIC-HILIC column (150mm×2.1mm×3.5μm) and was detected at 236nm. The method was validated and calibration curves were linear with r2>0.99 over the range of 20-2000μgL-1for plasma and 5-2000μgL-1for urine and lake water samples. The limits of detection were in the range (3.8-5.6)μgL-1, (0.8-1.5)μgL-1and (0.3-0.8)μgL-1for plasma, urine and lake water, respectively. The accuracies in the three matrices were within 87.3-103%, 87.4-109%, 82.2-109% of the nominal concentration for metformin, buformin and phenformin, respectively. The relative standard deviation for inter- and intra -day precision were in the range of 1.0-17% for all analytes in the three matrices.
Matched MeSH terms: Water Pollutants, Chemical/urine