Displaying all 2 publications

Abstract:
Sort:
  1. Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Mohd Nadzir MS, Othman M, et al.
    Chemosphere, 2019 Dec;237:124451.
    PMID: 31394440 DOI: 10.1016/j.chemosphere.2019.124451
    This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ± 23.71 μg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ± 0.45 μg/m3 to 6.20 ± 3.51 μg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ± 114.57 μg/m3) in comparison to petrol station (73.08 ± 30.41 μg/m3), petrochemical industry (32.10 ± 13.13 μg/m3) and airport (25.30 ± 6.17 μg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.
    Matched MeSH terms: Xylenes/analysis*
  2. Idris SA', Hanafiah MM, Khan MF, Hamid HHA
    Chemosphere, 2020 Sep;255:126932.
    PMID: 32402880 DOI: 10.1016/j.chemosphere.2020.126932
    The aim of the present study was to investigate the potential sources of heavy metals in fine air particles (PM2.5) and benzene, toluene, ethylbenzene, and isomeric xylenes (BTEX) in gas phase indoor air. PM2.5 samples were collected using a low volume sampler. BTEX samples were collected using passive sampling onto sorbent tubes and analyzed using gas chromatography-mass spectrometry (GC-MS). For the lower and upper floors of the evaluated building, the concentrations of PM2.5 were 96.4 ± 2.70 μg/m3 and 80.2 ± 3.11 μg/m3, respectively. The compositions of heavy metals in PM2.5 were predominated by iron (Fe), zinc (Zn), and aluminum (Al) with concentration of 500 ± 50.07 ng/m3, 466 ± 77.38 ng/m3, and 422 ± 147.38 ng/m3. A principal component analysis (PCA) showed that the main sources of BTEX were originated from vehicle emissions and exacerbate because of temperature variations. Hazard quotient results for BTEX showed that the compounds were below acceptable limits and thus did not possess potential carcinogenic risks. However, a measured output of lifetime cancer probability revealed that benzene and ethylbenzene posed definite carcinogenic risks. Pollutants that originated from heavy traffic next to the sampling site contributed to the indoor pollution.
    Matched MeSH terms: Xylenes/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links