Displaying all 2 publications

Abstract:
Sort:
  1. Zainuddin MF, Kar Fai C, Mohamed MS, Abdul Rahman N', Halim M
    PeerJ, 2022;10:e12833.
    PMID: 35251776 DOI: 10.7717/peerj.12833
    Nowadays, the replacement of petro-diesel with biodiesel has raised the concern among the community for the utilization of improper feedstocks and the cost involved. However, these issues can be solved by producing single cell oil (SCO) from lignocellulosic biomass hydrolysates by oleaginous microorganisms. This study introduced Yarrowia lipolytica JCM 2320 with a desiccated coconut residue (DCR) hydrolysate (obtained from the 2% dilute sulphuric acid pretreatment) as a carbon source in generating SCO. However, common inhibitors formed during acid pretreatment of biomass such as five-hydroxymethylfurfural (HMF), furfural, acetic acid and levulinic acid resulting from the sugar degradations may have detrimental effects towards the fermentation process. To visualize the effect of inhibitors on Y. lipolytica, an inhibitory study was conducted by adding 0.5-5.0 g/L of potential inhibitors to the YPD (yeast, peptone and D-glucose) medium. It was found that the presence of furfural at 0.5 g/L would increase the lag phase, which beyond that was detrimental to Y. lipolytica. Furthermore, increasing the five-hydroxymethylfurfural (HMF) concentration would increase the lag phase of Y. lipolytica, whereas, for acetic acid and levulinic acid, it showed a negligible effect. Detoxification was hence conducted to remove the potential inhibitors from the DCR hydrolysate prior its utilization in the fermentation. To examine the possibility of using adsorption resins for the detoxification of DCR hydrolysate, five different resins were tested (Amberlite® XAD-4, Amberlite® XAD-7, Amberlite® IR 120, Amberlite® IRA 96 and Amberlite® IRA 402) with five different concentrations of 1%, 3%, 5%, 10% and 15% (w/v), respectively. At resin concentration of 10%, Amberlite® XAD-4 recorded the highest SCO yield, 2.90 ± 0.02 g/L, whereas the control and the conventional overliming detoxification method, recorded only 1.29 ± 0.01 g/L and 1.27 ± 0.02 g/L SCO accumulation, respectively. Moreover, the fatty acid profile of the oil produced was rich in oleic acid (33.60%), linoleic acid (9.90%), and palmitic acid (14.90%), which indicates the potential as a good biodiesel raw material.
    Matched MeSH terms: Yarrowia*
  2. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

    Matched MeSH terms: Yarrowia
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links