Displaying all 2 publications

Abstract:
Sort:
  1. Chung CH, Bretherton B, Zainalabidin S, Deuchars SA, Deuchars J, Mahadi MK
    Front Neurosci, 2020;14:906.
    PMID: 33013299 DOI: 10.3389/fnins.2020.00906
    Background: Myocardial infarction (MI) reperfusion therapy causes paradoxical cardiac complications. Following restoration of blood flow to infarcted regions, a multitude of inflammatory cells are recruited to the site of injury for tissue repair. Continual progression of cardiac inflammatory responses does, however, lead to adverse cardiac remodeling, inevitably causing heart failure.

    Main Body: Increasing evidence of the cardioprotective effects of both invasive and non-invasive vagal nerve stimulation (VNS) suggests that these may be feasible methods to treat myocardial ischemia/reperfusion injury via anti-inflammatory regulation. The mechanisms through which auricular VNS controls inflammation are yet to be explored. In this review, we discuss the potential of autonomic nervous system modulation, particularly via the parasympathetic branch, in ameliorating MI. Novel insights are provided about the activation of the cholinergic anti-inflammatory pathway on cardiac macrophages. Acetylcholine binding to the α7 nicotinic acetylcholine receptor (α7nAChR) expressed on macrophages polarizes the pro-inflammatory into anti-inflammatory subtypes. Activation of the α7nAChR stimulates the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This inhibits the secretion of pro-inflammatory cytokines, limiting ischemic injury in the myocardium and initiating efficient reparative mechanisms. We highlight recent developments in the controversial auricular vagal neuro-circuitry and how they may relate to activation of the cholinergic anti-inflammatory pathway.

    Conclusion: Emerging published data suggest that auricular VNS is an inexpensive healthcare modality, mediating the dynamic balance between pro- and anti-inflammatory responses in cardiac macrophages and ameliorating cardiac ischemia/reperfusion injury.

    Matched MeSH terms: alpha7 Nicotinic Acetylcholine Receptor
  2. Zulkifli MH, Viswenaden P, Jasamai M, Azmi N, Yaakob NS
    Biomed Pharmacother, 2019 Feb 20;112:108630.
    PMID: 30797147 DOI: 10.1016/j.biopha.2019.108630
    5-HT3R antagonists such as ondansetron, granisetron and tropisetron have been clinically used to treat nausea and vomiting in chemotherapy patients. However, current study and research revealed novel potentials of these ligands in other diseases like inflammation, Alzheimer's, and drug abuse. Towards utilising these drugs as anti-smoking agents to treat nicotine dependence problem, there are conflicting reports regarding the potential of these ligands in modulating the effects of nicotine in both human and animal behavioural studies. This is complicated by the heterogeneity of 5-HT3R itself, cross regulation between nicotinic acetylcholinergic receptor (nAChR) and distinct pharmacological profiles of 5-HT3R antagonists. This review gathered existing studies conducted investigating the potential of "-setron" class of 5-HT3R antagonists in modulating nicotine effects. We proposed that the mechanism where 5-HT3R antagonists mediate the effects of nicotine could be attributed by both direct at 5-HT3R and indirect mechanism in nicotine addiction downstream regulation. The indirect mechanism mediated by the 5-HT3R antagonist could be through α7 nAChR, 5-HT1B receptor (5-HT1BR), 5-HT1C receptor (5-HT1CR), calcineurin activity, p38 MAPK level, PPAR-γ and NF-κβ. Our review suggested that future studies should focus on newer 5-HT3R antagonist with superior pharmacological profile or the one with multitarget action rather than high selectivity at single receptor.
    Matched MeSH terms: alpha7 Nicotinic Acetylcholine Receptor
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links