We first sequenced and characterised the complete mitochondrial genome of Toxocara apodeme, then studied the evolutionary relationship of the species within Toxocaridae. The complete mitochondrial genome was amplified using PCR with 14 specific primers. The mitogenome length was 14303 bp in size, including 12 PCGs (encoding 3,423 amino acids), 22 tRNAs, 2 rRNAs, and 2 NCRs, with 68.38% A+T contents. The mt genomes of T. apodemi had relatively compact structures with 11 intergenic spacers and 5 overlaps. Comparative analyses of the nucleotide sequences of complete mt genomes showed that T. apodemi had higher identities with T. canis than other congeners. A sliding window analysis of 12 PCGs among 5 Toxocara species indicated that nad4 had the highest sequence divergence, and cox1 was the least variable gene. Relative synonymous codon usage showed that UUG, ACU, CCU, CGU, and UCU most frequently occurred in the complete genomes of T. apodemi. The Ka/Ks ratio showed that all Toxocara mt genes were subject to purification selection. The largest genetic distance between T. apodemi and the other 4 congeneric species was found in nad2, and the smallest was found in cox2. Phylogenetic analyses based on the concatenated amino acid sequences of 12 PCGs demonstrated that T. apodemi formed a distinct branch and was always a sister taxon to other congeneric species. The present study determined the complete mt genome sequences of T. apodemi, which provide novel genetic markers for further studies of the taxonomy, population genetics, and systematics of the Toxocaridae nematodes.
Cucullanus sp. is a genus of nematode infecting Barbonymus schwanenfeldii. It is categorized under Family Cucullunidae. The genus Cucullanus sp consists of various species around the world, parasitizing freshwater, brackish-water or marine fishes. Cucullanus sp are mainly found in internal organs like stomach, intestine, kidney, and spleen. This parasitic organism can cause an economic impact, especially for animals with high market value, which are commercialized and used for human consumption. The objectives of this study are to study the morphological characteristics of Cucullanus sp and to identify genus of Cucullanus sp which are found on tinfoil barb, Barbonymus schwanenfeldii at Kenyir Lake, Terengganu. There is not enough data on Cucullanus sp on B. schwanenfeldii. Six samples of tinfoil barb were collected at Kenyir Lake from 25 to 27 October 2018. Each sample of fish was measured and recorded for length and weight using ruler and weighing balance respectively. The fish were examined at camping site at Lawit Resort, Kenyir Lake. The nematode species found were brought back to Health of Aquatic Organism laboratory. The abdominal and gastrointestinal tracts of the fishes were dissected and placed in petri dishes. The nematodes found were collected and observed under the dissecting microscope. The nematode specimen was placed on a glass slide with a drop of lactophenol and observed under the compound microscope fitted with dino-eye. The sample was later fixed with 70% alcohol. The morphological characteristic was drawn using camera lucida fitted to a compound microscope. (40X magnification). The picture of nematode was captured by using Advanced Research Microscope (Nikon Eclipse 80i) and measurements of the nematode was also made. Hence, the nematode found was identified as male Cucullanus sp.
Infections by gastrointestinal parasites are found in a variety of animals worldwide. For the diagnosis of such infections, the flotation method is commonly used to detect parasitic microorganisms, such as oocysts or eggs, in feces. Instead of adding a flotation solution after the final centrifugation step and using a cover slip to collect the parasites, the method using a wire loop for the recovery of the organisms has been reported as one of alternative methods. However, the recovery rates of microorganisms from the flotation method have not been analysed. In the present study, the utility of a flotation method with the use of a wire loop of 8 mm in diameter (the loop method) was evaluated using different numbers of E. tenella oocysts and Heterakis gallinarum eggs, and chicken fecal samples collected at the farms. Consequently, we found that the oocysts and eggs in tubes could be collected at a ratio of 2.00 to 3.08. Thus, our results indicate that the loop method is a simple and time saving method, implicating the application for the estimated OPG/ EPG (Oocysts/Eggs per gram) of the samples.
In February 2013, forty-seven Notched threadfin bream, the Nemipterus peronii, were sampled from the eastern coastal waters of the South China Sea. The concentration of various elements, namely cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), strontium (Sr), manganese (Mn), selenium (Se), Lead (Pb), nickel (Ni), aluminum (Al), arsenic (As), iron (Fe), and Zinc (Zn) were analyzed in the liver, muscle, and kidney organs of the host, as well as in their parasites Hysterothalycium reliquens (nematode) and the Paraphilometroides nemipteri (nematode), using inductively coupled plasma mass spectrometry (ICP-MS). The former group of parasites showed highest accumulation capacity for Cr, Cu, Fe, Mn, Se, Ni, and Zn while the latter group had high accumulation potential of As, Hg, Cd, Al, Pb, and Sr. The divergence in heavy-metal accumulation profiles of both nematodes is linked with the specificity of microhabitats, cuticle morphology, and interspecific competition. The outcome of this study indicates that both parasite models can be used for biomonitoring of metal pollution in marine ecosystems.