Displaying all 4 publications

Abstract:
Sort:
  1. Mehdi WA, Mehde AA, Raus RA, Yusof F, Abidin ZAZ, Ghazali H, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):610-616.
    PMID: 29959006 DOI: 10.1016/j.ijbiomac.2018.06.113
    BACKGROUND: It is assumed that genetic factors play crucial role in nephrolithiasis. The present study was conducted to explore the role of Human Transcription Factor-7 like-2 (TCF7L2) β-defensin (DEFB1) and CD14 gene polymorphism in development and progression of nephrolithiasis.

    METHODS: The genotypes of TCF7L2, DEFB1 and CD14 polymorphism were determined in 240 nephrolithiasis patients and 240 healthy controls by restriction digestion method of PCR. The levels of serum TCF7L2, DEFB1, CD14, uric acid and other biochemical parameters were measured both in nephrolithiasis patients and healthy control.

    RESULTS: The patients and control groups showed 30% and 50% 1654 AA DEFB1 genotype respectively. The Allele frequency in case of patient's group was 63.67% while in control group it was 36.33%. The mean serum DEFB1 levels of the patients and control groups attained were 115.66 and 239.43 pg/mL respectively. The allele frequency of TCF7L2 in patients and controls were 44.17% and 70.0% for C-allele, 55.83% and 30.00% for T-allele respectively. The mean of serum TCF7L2 levels were significantly decreased in patients compared to control group.

    CONCLUSIONS: The present findings are first of its class that validates a considerable connection of DEFB1 and TCF7L2 gene polymorphisms with nephrolithiasis and could probably act as indicators to estimate the risk associated to nephrolithiasis.

    Matched MeSH terms: beta-Defensins/genetics*
  2. Suryohastari RRB, Sumarsono SH, Giri-Rachman EA, Edi SP
    Trop Biomed, 2024 Jun 01;41(2):142-148.
    PMID: 39154265 DOI: 10.47665/tb.41.2.002
    Salmonella enterica subsp. enterica serovar Enteritidis (SE) is a global concern for the poultry industry due to its association with foodborne illnesses. The transmission occurs through the transovarial route which initiates from colonization in oviducts and ascending to ovaries. Though there are studies on cytosine-phosphate-guanine oligodeoxynucleotide (CpG-ODN) and the increase of innate immune response, there is limited research on the intravaginal treatment using CpG-ODN. Previous studies have shown that stimulating CpG-ODN can induce the production of antimicrobial peptide avian beta-defensins (AvBDs) in vaginal cell cultures, there is limited information on the use of intravaginal treatment to induce the innate immune system, particularly in the Kampung Unggul Balitbangtan (KUB-1) chickens (Gallus gallus domesticus). This study investigates the impact of intravaginal CpG-ODN stimulation on the innate immune response in KUB-1 chicken ovaries and oviducts when challenged to SE. A total of 39 KUB-1 chickens were divided into four groups namely T1 (treated with CpG-ODN, n=12), T2 (SE group, n=12), T3 (CpG-ODN and SE, n=12), and Control (without CpG-ODN and SE, n=3). Chickens were observed from day 1 to 4 post-intravaginal (PI) inoculation. The results suggest that intravaginal CpG-ODN treatment modulates AvBD10 production through toll-like receptor (TLR)21, with interleukin (IL)1B and IL10 playing reciprocal roles, providing insights into the potential of this treatment to prevent transovarial Salmonellosis in poultry. The novelty of this study adds valuable insights to the current body of knowledge.
    Matched MeSH terms: beta-Defensins/genetics
  3. Ortiz RH, Leon DA, Estevez HO, Martin A, Herrera JL, Romo LF, et al.
    Clin Exp Immunol, 2009 Aug;157(2):271-81.
    PMID: 19604267 DOI: 10.1111/j.1365-2249.2009.03941.x
    Buruli ulcer (BU) is the third most common mycobacterial disease in immunocompetent hosts. BU is caused by Mycobacterium ulcerans, which produces skin ulcers and necrosis at the site of infection. The principal virulence factor of M. ulcerans is a polyketide-derived macrolide named mycolactone, which has cytotoxic and immunosuppressive activities. We determined the severity of inflammation, histopathology and bacillary loads in the subcutaneous footpad tissue of BALB/c mice infected with 11 different M. ulcerans isolates from diverse geographical areas. Strains from Africa (Benin, Ghana, Ivory Coast) induced the highest inflammation, necrosis and bacillary loads, whereas the strains collected from Australia, Asia (Japan, Malaysia, New Guinea), Europe (France) and America (Mexico) induced mild inflammation. Subsequently, animals were infected with the strain that exhibited the highest (Benin) or lowest (Mexico) level of virulence in order to analyse the local immune response generated. The Mexican strain, which does not produce mycolactone, induced a predominantly T helper type 1 (Th1) cytokine profile with constant high expression of the anti-microbial peptides beta defensins 3 and 4, in co-existence with low expression of the anti-inflammatory cytokines interleukin (IL)-10, IL-4 and transforming growth factor (TGF)-beta. The highly virulent strain from Benin which produces mycolactone A/B induced the opposite pattern. Thus, different local immune responses were found depending on the infecting M. ulcerans strain.
    Matched MeSH terms: beta-Defensins/genetics
  4. Abubakar SA, Isa MM, Omar N, Tan SW
    Mol Med Rep, 2020 Dec;22(6):4931-4937.
    PMID: 33174018 DOI: 10.3892/mmr.2020.11560
    The human ocular surface produces highly conserved cationic peptides. Human β‑defensins (HBDs) serve an important role in innate and adaptive immunity. They are primarily expressed in epithelial cells in response to infection and provide the first line of defence against invading microbes. Defensin β1 (DEFB1) is constitutively expressed and regulated by inflammatory mediators including interferon‑γ, lipopolysaccharide and peptidoglycans. DEFB4A is locally induced in response to microbial infection while DEFB109 is induced via Toll‑like receptor 2. The present study examined the expression of the HBD DEFB1, DEFB4A and DEFB109 genes in pterygium. The pterygium tissues and normal conjunctiva samples were obtained from 18 patients undergoing pterygium surgery. The reverse transcription‑quantitative polymerase chain reaction method was employed to determine the expression of DEFB1, DEFB4A and DEFB109 genes. The results revealed that the expression of DEFB1 and DEFB4A was significantly higher and upregulated in pterygium samples when compared with normal conjunctiva samples from each patient (P<0.05), while the expression of DEFB109 was observed to be lower in pterygium samples when compared with normal samples from the same patient. Previous studies have revealed that DEFB1 and DEFB4A genes are present in low concentrations inside the human eye, and they are upregulated during the maturation of keratinocytes, suggesting a possible role in cell differentiation. The DEFB109 gene is present in higher concentrations inside the human eye, though it is newly discovered. It has also been reported that DEFB1 may be involved in carcinogenesis epithelial tumours. Collectively, the current data suggests that HBDs may serve a crucial role in the pathogenesis and development of pterygia, and thus may be considered as novel molecular targets in understanding pterygia development.
    Matched MeSH terms: beta-Defensins/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links