Displaying all 3 publications

Abstract:
Sort:
  1. Hodder S, Fox M, Binti Ahmad Mokhtar AM, Mott HR, Owen D
    Small GTPases, 2023 Dec;14(1):14-25.
    PMID: 37194323 DOI: 10.1080/21541248.2023.2212573
    Activated Cdc42-associated kinase (ACK), a non-receptor tyrosine kinase, is an effector for the small GTPase Cdc42. ACK is emerging as an important component of the cancer landscape and thus, a promising target for the treatment of many malignancies. ACK is also being increasingly recognized as a potentially influential player in the regulation of protein homoeostasis. The delicate equilibrium between protein synthesis and protein degradation is crucial for healthy cell function and dysregulation of protein homoeostasis is a common occurrence in human disease. Here, we review the molecular mechanisms by which ACK regulates the stability of diverse cellular proteins (e.g. EGFR, p27, p53, p85 isoforms and RhoGDI-3), some of which rely on the kinase activity of ACK while others, interestingly, do not. Ultimately, further research will be required to bridge our knowledge gaps and determine if ACK regulates the stability of further cellular proteins but collectively, such mechanistic interrogation would contribute to determining whether ACK is a promising target for anti-cancer therapy. In therapeutics, proteasome inhibitors are an efficacious but problematic class of drugs. Targeting other modulators of proteostasis, like ACK, could open novel avenues for intervention.
    Matched MeSH terms: cdc42 GTP-Binding Protein/metabolism
  2. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al.
    Nat Commun, 2016 Feb 24;7:10822.
    PMID: 26905694 DOI: 10.1038/ncomms10822
    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
    Matched MeSH terms: cdc42 GTP-Binding Protein/metabolism
  3. Murphy NP, Binti Ahmad Mokhtar AM, Mott HR, Owen D
    Biochem Soc Trans, 2021 06 30;49(3):1425-1442.
    PMID: 34196668 DOI: 10.1042/BST20200557
    Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
    Matched MeSH terms: cdc42 GTP-Binding Protein/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links