Displaying all 8 publications

Abstract:
Sort:
  1. Nolan D, Stephens F, Crockford M, Jones JB, Snow M
    J Fish Dis, 2015 Feb;38(2):187-95.
    PMID: 24475941 DOI: 10.1111/jfd.12222
    This report documents an emerging trend of identification of Megalocytivirus-like inclusions in a range of ornamental fish species intercepted during quarantine detention at the Australian border. From September 2012 to February 2013, 5 species of fish that had suffered mortality levels in excess of 25% whilst in the post-entry quarantine and had Megalocytivirus-like inclusion bodies in histological sections were examined by PCR. The fish had been imported from Singapore, Malaysia and Sri Lanka. Ninety-seven of 111 individual fish from affected tanks of fish tested were positive for the presence of Megalocytivirus by PCR. Sequence analysis of representative PCR products revealed an identical sequence of 621 bp in all cases which was identical to a previously characterized Megalocytivirus (Sabah/RAA1/2012 strain BMGIV48). Phylogenetic analysis of available Megalocytivirus major capsid protein (MCP) sequences confirmed the existence of 3 major clades of Megalocytivirus. The virus detected in this study was identified as a member of Genotype II. The broad host range and pathogenicity of megalocytiviruses, coupled to the documented spread of ornamental fish into the environment, render this a significant and emerging biosecurity threat to Australia.
    Matched MeSH terms: DNA Virus Infections/transmission; DNA Virus Infections/veterinary*; DNA Virus Infections/virology
  2. Girisha SK, Kushala KB, Nithin MS, Puneeth TG, Naveen Kumar BT, Vinay TN, et al.
    Transbound Emerg Dis, 2021 Mar;68(2):964-972.
    PMID: 33448668 DOI: 10.1111/tbed.13793
    Infectious spleen and kidney necrosis virus (ISKNV), a member of family iridoviridae, reported for the first time in a wide range of ornamental fish species in India. Significant mortalities during the year 2018-19 were reported from a number of retailers in the region with various clinical signs. The samples of moribund, dead and apparently healthy ornamental fishes were collected from retailers, located in three districts of Karnataka, India. Out of 140 fish samples, 16 samples (11.42%) representing 10 different fish species were found positive to ISKNV by OIE listed primers and same samples were reported to amplify the major capsid protein (MCP) gene of ISKNV. Further, sequence analysis of MCP gene showed that all strains detected in this study were closely related to other documented isolates from different countries with an identity ranging from 98.76% to 100%. Further, they clustered in the clade of ISKNV, during the phylogenetic analysis. The sequence similarity was high (99.94%) to ISKNV strains from Japan, Australia and Malaysia. This is the first report of an ISKNV infection in India. Moreover, out of 10 ISKNV-positive fish species, three species were reported positive to ISKNV for the first time in the world. Further, the in vitro experiment showed the growth of virus in Asian sea bass cell line, which is a natural host of ISKNV. Therefore, considering the lethal nature of megalocytiviruses to infect a vast range of species, proper biosecurity measures need to be taken to control these emerging pathogens.
    Matched MeSH terms: DNA Virus Infections/epidemiology; DNA Virus Infections/veterinary*; DNA Virus Infections/virology
  3. Subramaniam K, Shariff M, Omar AR, Hair-Bejo M, Ong BL
    J Fish Dis, 2014 Jul;37(7):609-18.
    PMID: 23952914 DOI: 10.1111/jfd.12152
    'Gold standard' OIE reference PCR assay was utilized to detect the presence of infectious spleen and kidney necrosis virus (ISKNV) in freshwater ornamental fish from Malaysia. From total of 210 ornamental fish samples representing 14 species, ISKNV was detected in 36 samples representing 5 fish species. All positive cases did not show any clinical signs of ISKNV. Three restriction enzymes analyses showed that the fish were infected by identical strains of the same virus species within Megalocytivirus genus. Major capsid protein (MCP) genes of 10 ISKNV strains were sequenced and compared with 9 other reference nucleotide sequences acquired from GenBank. Sequence analysis of MCP gene showed that all strains detected in this study were closely related to the reference ISKNV with nucleotide sequence identity that was ranging from 99.8% to 100%. In addition, phylogenetic analysis of MCP gene revealed that viruses from genus Megalocytivirus can be divided into three genotypes: genotype 1 include reference ISKNV and all other strains that were detected in this study, genotype 2 include viruses closely related to red sea bream iridovirus (RSIV), and genotype 3 include viruses closely related turbot reddish body iridovirus (TRBIV).
    Matched MeSH terms: DNA Virus Infections/epidemiology; DNA Virus Infections/veterinary*; DNA Virus Infections/virology
  4. Rao R, Bhassu S, Bing RZ, Alinejad T, Hassan SS, Wang J
    J Invertebr Pathol, 2016 05;136:10-22.
    PMID: 26880158 DOI: 10.1016/j.jip.2016.01.002
    The world production of shrimp such as the Malaysian giant freshwater prawn, Macrobrachium rosenbergii is seriously affected by the white spot syndrome virus (WSSV). There is an urgent need to understand the host pathogen interaction between M. rosenbergii and WSSV which will be able to provide a solution in controlling the spread of this infectious disease and lastly save the aquaculture industry. Now, using Next Generation Sequencing (NGS), we will be able to capture the response of the M. rosenbergii to the pathogen and have a better understanding of the host defence mechanism. Two cDNA libraries, one of WSSV-challenged M. rosenbergii and a normal control one, were sequenced using the Illumina HiSeq™ 2000 platform. After de novo assembly and clustering of the unigenes from both libraries, 63,584 standard unigenes were generated with a mean size of 698bp and an N50 of 1137bp. We successfully annotated 35.31% of all unigenes by using BLASTX program (E-value <10-5) against NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genome pathway (KEGG) and Orthologous Groups of proteins (COG) databases. Gene Ontology (GO) assessment was conducted using BLAST2GO software. Differentially expressed genes (DEGs) by using the FPKM method showed 8443 host genes were significantly up-regulated whereas 5973 genes were significantly down-regulated. The differentially expressed immune related genes were grouped into 15 animal immune functions. The present study showed that WSSV infection has a significant impact on the transcriptome profile of M. rosenbergii's hepatopancreas, and further enhanced the knowledge of this host-virus interaction. Furthermore, the high number of transcripts generated in this study will provide a platform for future genomic research on freshwater prawns.
    Matched MeSH terms: DNA Virus Infections/genetics; DNA Virus Infections/immunology; DNA Virus Infections/veterinary*
  5. Senapin S, Dong HT, Meemetta W, Gangnonngiw W, Sangsuriya P, Vanichviriyakit R, et al.
    J Fish Dis, 2019 Jan;42(1):119-127.
    PMID: 30397913 DOI: 10.1111/jfd.12915
    In Southeast Asia, a new disease called scale drop disease (SDD) caused by a novel Megalocytivirus (SDDV) has emerged in farmed Asian sea bass (Lates calcarifer) in Singapore, Malaysia and Indonesia. We received samples from an Eastern Thai province that also showed gross signs of SDD (loss of scales). Clinical samples of 0.2-1.1 kg L. calcarifer collected between 2016 and 2018 were examined for evidence of SDDV infection. Histopathology was similar to that in the first report of SDDV from Singapore including necrosis, inflammation and nuclear pyknosis and karyorrhexis in the multiple organs. Intracytoplasmic inclusion bodies were also observed in the muscle tissue. In a density-gradient fraction from muscle extracts, TEM revealed enveloped, hexagonal megalocytiviral-like particles (~100-180 nm). By PCR using primers derived from the Singaporean SDDV genome sequence, four different genes were amplified and sequenced from the Thai isolate revealing 98.7%-99.9% identity between the two isolates. Since viral inclusions were rarely observed, clinical signs and histopathology could not be used to easily distinguish between SDD caused by bacteria or SDDV. We therefore recommend that PCR screening be used to monitor broodstock, fry and grow-out fish to estimate the current impact of SDDV in Southeast Asia and to prevent its spread.
    Matched MeSH terms: DNA Virus Infections/mortality; DNA Virus Infections/pathology; DNA Virus Infections/veterinary*
  6. Sudthongkong C, Miyata M, Miyazaki T
    Dis Aquat Organ, 2002 Apr 5;48(3):163-73.
    PMID: 12033703
    Many species of ornamental freshwater fishes are imported into Japan from all over the world. We found African lampeye Aplocheilichthys normani and dwarf gourami Colisa lalia suffering from an iridovirus infection just after being imported by tropical fish wholesalers from Singapore. African lampeye were cultured on the Indonesian Island of Sumatra and dwarf gourami were cultured in Malaysia before export. Diseased fishes displayed distinct histopathological signs of iridovirus infection: systemic appearance of inclusion body-bearing cells, and necrosis of splenocytes and hematopoietic cells. Electron microscopy revealed viral particles (African lampeye:180 to 200 nm in edge to edge diameter; dwarf gourami: 140 to 150 nm in diameter) in an inclusion body within the cytoplasm of inclusion body-bearing cells as well as in the cytoplasm of necrotized cells. Experimental infection with an iridovirus isolate from African lampeye (ALIV) revealed pathogenicity of ALIV to African lampeye and pearl gourami Trichogaster leeri. Polymerase chain reaction (PCR) products from ALIV and an iridovirus isolate from dwarf gourami (DGIV) using iridovirus-specific primers were indistinguishable. The nucleotide sequence of PCR products derived from ALIV (696 base pairs) and DGIV (701 base pairs) had 95.3% identity. These results indicate that ALIV and DGIV have a single origin.
    Matched MeSH terms: DNA Virus Infections/pathology; DNA Virus Infections/veterinary*; DNA Virus Infections/virology
  7. Chaurasia MK, Nizam F, Ravichandran G, Arasu MV, Al-Dhabi NA, Arshad A, et al.
    Fish Shellfish Immunol, 2016 Jan;48:228-38.
    PMID: 26631804 DOI: 10.1016/j.fsi.2015.11.034
    Considering the importance of heat shock proteins (HSPs) in the innate immune system of prawn, a comparative molecular approach was proposed to study the crustacean large HSPs 60, 70 and 90. Three different large HSPs were identified from freshwater prawn Macrobrachium rosenbergii (Mr) cDNA library during screening. The structural and functional characteristic features of HSPs were studied using various bioinformatics tools. Also, their gene expression and mRNA regulation upon various pathogenic infections was studied by relative quantification using 2(-ΔΔCT) method. MrHSP60 contains a long chaperonin 60 domain at 46-547 which carries a chaperonin 60 signature motif between 427 and 438, whereas MrHSP70 contains a long HSP70 domain at 21-624 and MrHSP90 carries a HSP90 domain at 188-719. The two dimensional analysis showed that MrHSP60 contains more amino acids (52%) in helices, whereas MrHSP70 (40.6%) and MrHSP90 (51.8%) carried more residues in coils. Gene expression results showed significant (P 
    Matched MeSH terms: DNA Virus Infections/immunology; DNA Virus Infections/veterinary
  8. Ma TH, Benzie JA, He JG, Sun CB, Chan SF
    Dev Comp Immunol, 2014 May;44(1):163-72.
    PMID: 24345607 DOI: 10.1016/j.dci.2013.12.007
    One of the major steps in the innate immune response of shrimp includes the activation of serine proteinases of the pro-phenoloxidase pathway by the prophenoloxidase activation enzyme (PPAF). In this study, the cDNA encoding a serine proteinase homologue (SPH) with prophenoloxidase activating activity of Penaeus monodon (PmPPAF) was cloned and characterized. PmPPAF cDNA consists of 1444 nucleotides encoding a protein with 394 amino acid residues. The estimated molecular weight of PmPPAF is 43.5 kDa with an isoelectric point of 5.19. PmPPAF consists of a signal peptide, a CLIP domain and a carboxyl-terminal trypsin-like serine protease domain. It is highly similar to the masquerade-like protein 2A (61% similarity) of the crayfish Pacifastacus leniusculus, other serine proteases (42.9-67% identity) of P. monodon, and the PPAF of the crab (61% similarity). Unlike other SPH of P. monodon, which express mainly in the hemocytes, PmPPAF transcripts were detected in the hemocytes, eyestalk, hypodermis, gill, swimming leg and brain. Similar to the crab PPAF, PmPPAF transcript level is high in shrimp at the premolt stages and PmPPAF expression is up-regulated in shrimp infected with white spot syndrome virus (WSSV). Gene silencing of PmPPAF decreased expression of a prophenoloxidase-like gene and injection of Anti-PmPPAF antibody causes a decrease in PO activity. Taken together, these results provided evidence that PmPPAF is a serine proteinase homologue, and is involved in the pro-PO activation pathway of the shrimp innate immune system.
    Matched MeSH terms: DNA Virus Infections/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links