Pseudobranch function has long interested scientists, but its role has yet to be elucidated. Several studies have suggested that pseudobranchs serve respiratory, osmoregulatory, and sensory functions. This work investigated the immunolocalization of pseudobranch carbonic anhydrase (CA) in the teleost fish species rainbow trout (Oncorhynchus mykiss) to clarify its physiological function. CA was purified from rainbow trout gills O. mykiss and specific antibodies were raised. Immunoblotting between tissue homogenates of pseudobranch and gill CA antibodies showed specific immunostaining with only one band corresponding to CA in the pseudobranch homogenate. Results of immunohistochemical technique revealed that CA was distributed within pseudobranch cells and more precisely in the apical parts (anti-vascular) of cells. The basal (vascular) parts of cells, tubular system, blood capillaries, and pillar cells were not immunostained. Immunocytochemistry confirmed these results and showed that some CA enzyme was cytoplasmic and the remainder was linked to membranous structures. The results also showed that the lacunar tissue layers did not display immunoperoxidase activity. Our results indicated that pseudobranch CA may have a function related to the extracellular medium wherein CA intervenes with the mechanism of stimulation of afferent nerve fibers.
In the present study, the effect of copper was examined in the common goldfish (Carassius auratus auratus). Fish were fasted and exposed to either a high (0.84μM), a low (0.34μM) or a control copper concentration (0.05μM) for 1 and 7days. Swimming performance was not affected by either fasting or copper exposure. Food deprivation alone had no effect on ionoregulation, but low plasma osmolality levels and plasma Na(+) were noticed in fasted fish exposed to Cu for 7days. Both gill Na(+)/K(+)-ATPase and H(+)-ATPase activities were undisturbed, while both kidney ATPase activities were up-regulated when challenged with the high Cu levels. Up-regulated kidney ATPase activities likely acted as compensatory strategy to enhance Na(+) reabsorption. However, this up-regulation was not sufficient to restore Na(+) to control levels in the highest exposure group.
In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5-1.8mg O2L(-1)) at or slightly above their critical oxygen concentration during 1, 3 or 7days followed by a 7day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na(+)/K(+)-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation.