Displaying all 4 publications

Abstract:
Sort:
  1. Al-qattan MN, Mordi MN
    J Mol Model, 2010 May;16(5):1047-58.
    PMID: 19911202 DOI: 10.1007/s00894-009-0618-7
    A molecular docking tool of AutoDock3.05 was evaluated for its ability to reproduce experimentally determined affinities of various sialic acid analogues toward hemagglutinin of influenza A virus. With the exception of those with a C6-modified glycerol side chain, the experimental binding affinities of most sialic acid analogues (C2, C4 and C5-substituted) determined by viral hemadsorption inhibition assay, hemagglutination inhibition assay and nuclear magnetic resonance correlated well with the computationally estimated free energy of binding. Sialic acid analogues with modified glycerol side chains showed only poor correlation between the experimentally determined hemagglutinin inhibitor affinities and AutoDock3.05 scores, suggesting high mobility of the glutamic acid side chain at the glycerol binding pocket, which is difficult to simulate using a flexi-rigid molecular docking approach. In conclusion, except for some glycerol-substituted sialic acid analogues, the results showed the effectiveness of AutoDock3.05 searching and scoring functions in estimating affinities of sialic acid analogues toward influenza A hemagglutinin, making it a reliable tool for screening a database of virtually designed sialic acid analogues for hemagglutinin inhibitors.
    Matched MeSH terms: Hemagglutinins/metabolism*
  2. Al-qattan MN, Mordi MN
    J Mol Model, 2010 May;16(5):975-91.
    PMID: 19856192 DOI: 10.1007/s00894-009-0606-y
    In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.
    Matched MeSH terms: Hemagglutinins/metabolism*
  3. Abdul Rahman M, Anuar Karsani S, Othman I, Shafinaz Abdul Rahman P, Haji Hashim O
    Biochem Biophys Res Commun, 2002 Jul 26;295(4):1007-13.
    PMID: 12127996
    Our group has previously reported the isolation, partial characterisation, and application of a Galbeta1-3GalNAc- and IgA1-reactive lectin from the seeds of champedak (Artocarpus integer). In the present study, we have subjected the purified lectin to reverse-phase high performance liquid chromatography and sequenced its subunits. Determination of the N-terminal sequence of the first 47 residues of the large subunit demonstrated at least 95% homology to the N-terminal sequence of the alpha chains of a few other galactose-binding Artocarpus lectins. The two smaller subunits of the lectin, each comprised of 21 amino acid residues, demonstrated minor sequence variability. Their sequences were generally comparable to the beta chains of the other galactose-binding Artocarpus lectins. When used to probe human serum glycopeptides that were separated by two-dimensional gel electrophoresis, the lectin demonstrated strong apparent interactions with glycopeptides of IgA1, hemopexin, alpha2-HS glycoprotein, alpha1-antichymotrypsin, and a few unknown glycoproteins. Immobilisation of the lectin to Sepharose generated an affinity column that may be used to isolate the O-glycosylated serum glycoproteins.
    Matched MeSH terms: Hemagglutinins/metabolism*
  4. Firouzamandi M, Moeini H, Hosseini SD, Bejo MH, Omar AR, Mehrbod P, et al.
    Int J Nanomedicine, 2016;11:259-67.
    PMID: 26834470 DOI: 10.2147/IJN.S92225
    Plasmid DNA (pDNA)-based vaccines have emerged as effective subunit vaccines against viral and bacterial pathogens. In this study, a DNA vaccine, namely plasmid internal ribosome entry site-HN/F, was applied in ovo against Newcastle disease (ND). Vaccination was carried out using the DNA vaccine alone or as a mixture of the pDNA and dextran-spermine (D-SPM), a nanoparticle used for pDNA delivery. The results showed that in ovo vaccination with 40 μg pDNA/egg alone induced high levels of antibody titer (P<0.05) in specific pathogen-free (SPF) chickens at 3 and 4 weeks postvaccination compared to 2 weeks postvaccination. Hemagglutination inhibition (HI) titer was not significantly different between groups injected with 40 μg pDNA + 64 μg D-SPM and 40 μg pDNA at 4 weeks postvaccination (P>0.05). Higher antibody titer was observed in the group immunized with 40 μg pDNA/egg at 4 weeks postvaccination. The findings also showed that vaccination with 40 μg pDNA/egg alone was able to confer protection against Newcastle disease virus strain NDIBS002 in two out of seven SPF chickens. Although the chickens produced antibody titers 3 weeks after in ovo vaccination, it was not sufficient to provide complete protection to the chickens from lethal viral challenge. In addition, vaccination with pDNA/D-SPM complex did not induce high antibody titer when compared with naked pDNA. Therefore, it was concluded that DNA vaccination with plasmid internal ribosome entry site-HN/F can be suitable for in ovo application against ND, whereas D-SPM is not recommended for in ovo gene delivery.
    Matched MeSH terms: Hemagglutinins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links