The effect of Brachiaria decumbens (signal grass) on drug-metabolizing enzymes was studied in sheep. After 14 d of grazing a pure signal grass pasture, significant declines were observed in hepatic aminopyrine N-demethylase and aniline 4-hydroxylase (phase I biotransformation) and in conjugative enzymes UDP-glucuronyltransferase and glutathione S-transferase. Kidney enzymes were significantly decreased except for UDP-glucuronyltransferase. Enzyme activities were also compared for normal sheep and cattle livers and kidneys. Lower activities were found in cattle, indicating that factors other than biotransformation are responsible for the clincial tolerance of cattle to B. decumbens toxicity.
Spectroscopic examinations of purified extracts of the rumen content of sheep intoxicated by Brachiaria decumbens revealed the presence of a mixture of sapogenins, identified as 3-spirostanols. These isomeric steroid sapogenins (C27H44O3) are believed the toxic principles in causing toxicity in sheep after feeding on B. decumbens.
Although Brachiaria decumbens was not toxic when fed to cattle, the infusion of rumen liquor from B. decumbens intoxicated sheep into the rumen of cattle produced evidence suggesting hepatic and renal dysfunction. Several biochemical changes were observed including increases in serum aspartate amino transferase, serum creatinine and blood urea nitrogen and a marked reduction in the plasma bromosulphthalein clearance.
Severe neurological dysfunction was observed in sheep 4 weeks after grazing on Signal grass (Brachiaria decumbens). These neurological disorders included the stamping of forelegs, star-gazing, incoordination, head-pressing against the fence and circling movements. Histologically, numerous vacuolations of various sizes were observed in the white matter of the brain giving rise to a spongy appearance.
An attempt was made to clarify the association between zinc (Zn) and antioxidants due to Zn supplementation on lipid peroxidation occurring during Brachiaria decumbens intoxication. The concentration of Zn, copper, malondialdehyde (MDA), superoxide dismutase (SOD), and gluthathione peroxidase (GSH-Px) were determined in tissues. There was a gradual increment in the concentration of Zn and MDA in serum and hepatocytic SOD in groups given Zn + B decumbens. A decline in erythrocytic GSH-Px and SOD, and lower concentration of reduced glutathione in hepatocyte cytosols were also detected in these sheep. It is highly suggestive that Zn supplementation may depress antioxidant status and enhance lipid peroxidation during B decumbens intoxication.