Displaying all 3 publications

Abstract:
Sort:
  1. Alturkustani M, Bahakeem B, Zhang Q, Ang LC
    Malays J Pathol, 2020 Aug;42(2):187-194.
    PMID: 32860370
    INTRODUCTION: Multiple sclerosis (MS) has variable clinical presentations, prognoses, pathogeneses, and pathological patterns. We conducted a pathological review of acute MS-associated lesions that focused on the degree of axonal injury, myelin loss, and glial reaction to determine whether the observed demyelination was of the primary or secondary type.

    MATERIALS AND METHODS: After searching the records for a 15-year period at the London Health Sciences Centre Pathology Department, we identified 8 cases of surgical acute lesion biopsies in which clinical MS diagnoses were made before or after the biopsy.

    RESULTS: The white matter pathologies in these cases could be sorted into 3 morphological patterns. The first pattern, which represents typical demyelinated plaques, was observed in 4 cases and was characterised by nearly complete demyelination accompanied by variable degrees of axon preservation and axonal swelling. The second pattern was observed in 3 cases and was characterised by demyelinating lesions containing variable numbers of myelinated axons mixed with a few demyelinated axons and variable numbers of axonal swellings. The myelinated axons ranged from scattered fibres to bands of variable thickness, and the demyelination was a mixture of primary and secondary demyelination. The third pattern was observed in 1 case and was characterised by well-demarcated areas of reduced myelin staining and numerous apoptotic nuclei. Axonal staining revealed many fragmented axons with reduced myelin staining but no definitely demyelinated axons.

    CONCLUSIONS: This report shows that the predominant pathology underlying acute MS-related lesions is not limited to demyelination but can include axonal degeneration alone or in combination with primary demyelination which reflect different pathogenesis for these acute lesions.

    Matched MeSH terms: White Matter/pathology*
  2. Yazdani S, Yusof R, Riazi A, Karimian A
    Diagn Pathol, 2014;9:207.
    PMID: 25540017 DOI: 10.1186/s13000-014-0207-7
    Brain segmentation in magnetic resonance images (MRI) is an important stage in clinical studies for different issues such as diagnosis, analysis, 3-D visualizations for treatment and surgical planning. MR Image segmentation remains a challenging problem in spite of different existing artifacts such as noise, bias field, partial volume effects and complexity of the images. Some of the automatic brain segmentation techniques are complex and some of them are not sufficiently accurate for certain applications. The goal of this paper is proposing an algorithm that is more accurate and less complex).
    Matched MeSH terms: White Matter/pathology*
  3. Barbu MC, Zeng Y, Shen X, Cox SR, Clarke TK, Gibson J, et al.
    PMID: 30197049 DOI: 10.1016/j.bpsc.2018.07.006
    BACKGROUND: Major depressive disorder is a clinically heterogeneous psychiatric disorder with a polygenic architecture. Genome-wide association studies have identified a number of risk-associated variants across the genome and have reported growing evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic variation within the NETRIN1 pathway may provide important routes for identification of disease mechanisms by focusing on a specific process, excluding heterogeneous risk-associated variation in other pathways. Here, we sought to investigate whether major depressive disorder polygenic risk scores derived from the NETRIN1 signaling pathway (NETRIN1-PRSs) and the whole genome, excluding NETRIN1 pathway genes (genomic-PRSs), were associated with white matter microstructure.

    METHODS: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: n = 6401; MD: n = 6390).

    RESULTS: We found significantly lower FA in the superior longitudinal fasciculus (β = -.035, pcorrected = .029) and significantly higher MD in a global measure of thalamic radiations (β = .029, pcorrected = .021), as well as higher MD in the superior (β = .034, pcorrected = .039) and inferior (β = .029, pcorrected = .043) longitudinal fasciculus and in the anterior (β = .025, pcorrected = .046) and superior (β = .027, pcorrected = .043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts.

    CONCLUSIONS: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for major depressive disorder through effects on a number of white matter tracts.

    Matched MeSH terms: White Matter/pathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links