Affiliations 

  • 1 Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
  • 2 School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
  • 3 Unit of Biochemistry, Faculty of Medicine, Centre for Excellence in Biomaterials Engineering (CoEBE), AIMST University, 08100, Bedong, Kedah, Malaysia; Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
  • 4 Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
  • 5 PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 81157, Taiwan
  • 6 Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
  • 7 Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
  • 8 Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung city, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung City, 804, Taiwan. Electronic address: yclin@faculty.nsysu.edu.tw
  • 9 PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 81157, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung City, 804, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, 804, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan. Electronic address: kumar@kmu.edu.tw
Environ Res, 2023 Jan 01;216(Pt 2):114400.
PMID: 36265604 DOI: 10.1016/j.envres.2022.114400

Abstract

Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.