Affiliations 

  • 1 Integrated Sensors Research Group, School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
  • 2 NANO-ElecTronic Centre, School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia
Gels, 2022 Oct 26;8(11).
PMID: 36354598 DOI: 10.3390/gels8110690

Abstract

A highly selective and sensitive EGFET-pH sensor based on composite TiO2-PANI had been developed in this work. A sol-gel titanium dioxide (TiO2) and the composite of TiO2 with semiconducting polyaniline (PANI) were deposited using a simple spin-coating method on an indium tin oxide (ITO) substrate. The films have been explored as a sensing electrode (SE) of extended gate field-effect transistor (EGFET) for pH applications in the range of pH 2 to 12. The pH sensitivities between TiO2, TiO2-PANI bilayer composite, and TiO2-PANI composite thin films were discussed. Among these, the TiO2-PANI composite thin film showed a super-Nernstian behavior with high sensitivity of 66.1 mV/pH and linearity of 0.9931; good repeatability with a standard deviation of 0.49%; a low hysteresis value of 3 mV; and drift rates of 4.96, 5.54, and 3.32 mV/h in pH 4, 7, and 10, respectively, for 6 h. Upon applying the TiO2-PANI composite as the SE for nitrate measurement, low sensitivity of 12.9 mV/dec was obtained, indicating that this film is a highly selective sensing electrode as a pH sensor. The surface morphology and crystallinity of the thin films were also discussed.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.