Displaying all 16 publications

Abstract:
Sort:
  1. Pushpamalar J, Meganathan P, Tan HL, Dahlan NA, Ooi LT, Neerooa BNHM, et al.
    Gels, 2021 Sep 27;7(4).
    PMID: 34698125 DOI: 10.3390/gels7040153
    Delivering a drug to the target site with minimal-to-no off-target cytotoxicity is the major determinant for the success of disease therapy. While the therapeutic efficacy and cytotoxicity of the drug play the main roles, the use of a suitable drug delivery system (DDS) is important to protect the drug along the administration route and release it at the desired target site. Polysaccharides have been extensively studied as a biomaterial for DDS development due to their high biocompatibility. More usefully, polysaccharides can be crosslinked with various molecules such as micro/nanoparticles and hydrogels to form a modified DDS. According to IUPAC, hydrogel is defined as the structure and processing of sols, gels, networks and inorganic-organic hybrids. This 3D network which often consists of a hydrophilic polymer can drastically improve the physical and chemical properties of DDS to increase the biodegradability and bioavailability of the carrier drugs. The advancement of nanotechnology also allows the construction of hydrogel DDS with enhanced functionalities such as stimuli-responsiveness, target specificity, sustained drug release, and therapeutic efficacy. This review provides a current update on the use of hydrogel DDS derived from polysaccharide-based materials in delivering various therapeutic molecules and drugs. We also highlighted the factors that affect the efficacy of these DDS and the current challenges of developing them for clinical use.
  2. Sirkkunan DS, Muhamad F, Pingguan-Murphy B
    Gels, 2021 Sep 27;7(4).
    PMID: 34698174 DOI: 10.3390/gels7040154
    The use of neural scaffolds with a highly defined microarchitecture, fabricated with standard techniques such as electrospinning and microfluidic spinning, requires surgery for their application to the site of injury. To circumvent the risk associated with aciurgy, new strategies for treatment are sought. This has led to an increase in the quantity of research into injectable hydrogels in recent years. However, little research has been conducted into controlling the building blocks within these injectable hydrogels to produce similar scaffolds with a highly defined microarchitecture. "Magnetic particle string" and biomimetic amphiphile self-assembly are some of the methods currently available to achieve this purpose. Here, we developed a "magnetic anchor" method to improve the orientation of collagen fibres within injectable 3D scaffolds. This procedure uses GMNP (gold magnetic nanoparticle) "anchors" capped with CMPs (collagen mimetic peptides) that "chain" them to collagen fibres. Through the application of a magnetic field during the gelling process, these collagen fibres are aligned accordingly. It was shown in this study that the application of CMP functionalised GMNPs in a magnetic field significantly improves the alignment of the collagen fibres, which, in turn, improves the orientation of PC12 neurites. The growth of these neurite extensions, which were shown to be significantly longer, was also improved. The PC12 cells grown in collagen scaffolds fabricated using the "magnetic anchor" method shows comparable cellular viability to that of the untreated collagen scaffolds. This capability of remote control of the alignment of fibres within injectable collagen scaffolds opens up new strategic avenues in the research for treating debilitating neural tissue pathologies.
  3. Kamarozaman NS, Zainal N, Rosli AB, Zulkefle MA, Nik Him NR, Abdullah WFH, et al.
    Gels, 2022 Oct 26;8(11).
    PMID: 36354598 DOI: 10.3390/gels8110690
    A highly selective and sensitive EGFET-pH sensor based on composite TiO2-PANI had been developed in this work. A sol-gel titanium dioxide (TiO2) and the composite of TiO2 with semiconducting polyaniline (PANI) were deposited using a simple spin-coating method on an indium tin oxide (ITO) substrate. The films have been explored as a sensing electrode (SE) of extended gate field-effect transistor (EGFET) for pH applications in the range of pH 2 to 12. The pH sensitivities between TiO2, TiO2-PANI bilayer composite, and TiO2-PANI composite thin films were discussed. Among these, the TiO2-PANI composite thin film showed a super-Nernstian behavior with high sensitivity of 66.1 mV/pH and linearity of 0.9931; good repeatability with a standard deviation of 0.49%; a low hysteresis value of 3 mV; and drift rates of 4.96, 5.54, and 3.32 mV/h in pH 4, 7, and 10, respectively, for 6 h. Upon applying the TiO2-PANI composite as the SE for nitrate measurement, low sensitivity of 12.9 mV/dec was obtained, indicating that this film is a highly selective sensing electrode as a pH sensor. The surface morphology and crystallinity of the thin films were also discussed.
  4. Md S, Abdullah ST, Alhakamy NA, Bani-Jaber A, Radhakrishnan AK, Karim S, et al.
    Gels, 2021 Nov 30;7(4).
    PMID: 34940303 DOI: 10.3390/gels7040243
    This study aimed to develop gastro-retentive sustained-release ambroxol (ABX) nanosuspensions utilizing ambroxol-kappa-carrageenan (ABX-CRGK) complexation formulations. The complex was characterized by differential scanning calorimetry, powder x-ray diffractometer, and scanning electron microscopy. The prepared co-precipitate complex was used for the development of the sustained-release formulation to overcome the high metabolic and poor solubility problems associated with ABX. Furthermore, the co-precipitate complex was formulated as a suspension in an aqueous floating gel-forming vehicle of sodium alginate with chitosan, which might be beneficial for targeting the stomach as a good absorption site for ABX. The suspension exhibited rapid floating gel behaviour for more than 8 h, thus confirming the gastro-retentive effects. Particle size analysis revealed that the optimum nanosuspension (ABX-NS) had a mean particle size of 332.3 nm. Afterward, the ABX released by the nanoparticles would be distributed to the pulmonary tissue as previously described. Based on extensive pulmonary distribution, the developed nanosuspension-released ABX nanoparticles showed significant cytotoxic enhancement compared to free ABX in A549 lung cancer cells. However, a significant loss of mitochondrial membrane potential (MMP) also occurred. The level of caspase-3 was the highest in the ABX-NS-released particle-treated samples, with a value of 416.6 ± 9.11 pg/mL. Meanwhile, the levels of nuclear factor kappa beta, interleukins 6 and 1 beta, and tumour necrosis alpha (NF-kB, IL-6, IL-1β, and TNF-α, respectively) were lower for ABX-NS compared to free ABX (p < 0.05). In caspase-3, Bax, and p53, levels significantly increased in the presence of ABX-NS compared to free ABX. Overall, ABX-NS produced an enhancement of the anticancer effects of ABX on the A549 cells, and the developed sustained-release gel was successful in providing a gastro-retentive effect.
  5. Mahmood S, Almurisi SH, Al-Japairai K, Hilles AR, Alelwani W, Bannunah AM, et al.
    Gels, 2021 Dec 08;7(4).
    PMID: 34940313 DOI: 10.3390/gels7040254
    Ibuprofen is a well-known non-steroidal anti-inflammatory (NSAID) medicine that is often used to treat inflammation in general. When given orally, it produces gastrointestinal issues which lead to lower patient compliance. Ibuprofen transdermal administration improves both patient compliance and the efficacy of the drug. Nanoconjugation hydrogels were proposed as a controlled transdermal delivery tool for ibuprofen. Six formulations were prepared using different compositions including chitosan, lipids, gum arabic, and polyvinyl alcohol, through ionic interaction, maturation, and freeze-thaw methods. The formulations were characterised by size, drug conjugation efficiency, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Further analysis of optimised hydrogels was performed, including X-ray diffraction (XRD), rheology, gel fraction and swelling ability, in vitro drug release, and in vitro macrophage prostaglandin E2 (PGE2) production testing. The effects of ibuprofen's electrostatic interaction with a lipid or polymer on the physicochemical and dissolution characterisation of ibuprofen hydrogels were evaluated. The results showed that the S3 (with lipid conjugation) hydrogel provided higher conjugation efficiency and prolonged drug release compared with the S6 hydrogel.
  6. Pandey M, Choudhury H, Gorain B, Tiong SQ, Wong GYS, Chan KX, et al.
    Gels, 2021 Nov 16;7(4).
    PMID: 34842689 DOI: 10.3390/gels7040218
    Skin cancer, one of the most prevalent cancers worldwide, has demonstrated an alarming increase in prevalence and mortality. Hence, it is a public health issue and a high burden of disease, contributing to the economic burden in its treatment. There are multiple treatment options available for skin cancer, ranging from chemotherapy to surgery. However, these conventional treatment modalities possess several limitations, urging the need for the development of an effective and safe treatment for skin cancer that could provide targeted drug delivery and site-specific tumor penetration and minimize unwanted systemic toxicity. Therefore, it is vital to understand the critical biological barriers involved in skin cancer therapeutics for the optimal development of the formulations. Various nanocarriers for targeted delivery of chemotherapeutic drugs have been developed and extensively studied to overcome the limitations faced by topical conventional dosage forms. A site-specific vesicular drug delivery system appears to be an attractive strategy in topical drug delivery for the treatment of skin malignancies. In this review, vesicular drug delivery systems, including liposomes, niosomes, ethosomes, and transfersomes in developing novel drug delivery for skin cancer therapeutics, are discussed. Firstly, the prevalence statistics, current treatments, and limitations of convention dosage form for skin cancer treatment are discussed. Then, the common type of nanocarriers involved in the research for skin cancer treatment are summarized. Lastly, the utilization of vesicular drug delivery systems in delivering chemotherapeutics is reviewed and discussed, along with their beneficial aspects over other nanocarriers, safety concerns, and clinical aspects against skin cancer treatment.
  7. Li H, Tang R, Mustapha WAW, Liu J, Hasan KMF, Li X, et al.
    Gels, 2021 Dec 27;8(1).
    PMID: 35049558 DOI: 10.3390/gels8010021
    Gelatin coating is an effective way to prolong the shelf life of meat products. Aiming at solving the problem of flavor deterioration during the storage of pork at room temperature, pork coating technology was developed to preserve the pork at 25 °C, and the comprehensive sensory analysis of vision, touch, smell, and taste was used to study the effect of coating on preservation of pork flavor. Herein, uncoated (control) and coated pork samples (including gelatin coating and gelatin coating incorporated with ginger essential oil) were analyzed to investigate the integrity of pork periodically during storage at 25 °C for weight loss, color, texture (springiness, chewiness, cohesiveness, gumminess, and hardness), microstructure, odor (electronic nose), taste (electronic tongue), volatile flavor substance, and taste ingredients. The results suggested that ginger essential oil (GEO) gelatin coating and gelatin coating can effectively inhibit the loss of water dispersion and slow down the oxidation reaction, coating treatments could significantly (p < 0.05) retarded the weight loss of pork slices, with values of 20.19%, 15.95%, 13.12% for uncoated, gelatin coated, and GEO-gelatin coated samples during 24 h of storage, respectively. Compared with control group, the color, texture, smell, and taste evaluations demonstrated that coating treatments had improved sensory and texture attributes during the storage period. Furthermore, the comprehensive results from the physical property assays (especially the texture), morphological assay and volatile odor assays showed that the GEO-fish gelatin composite coating had better preservation effect on pork flavor than the fish gelatin coating. The study suggests that the gelatin composite coating could be developed as a prospective active packaging to preserve pork meat at room temperature.
  8. Ullah G, Nawaz A, Latif MS, Shah KU, Ahmad S, Javed F, et al.
    Gels, 2023 Jan 04;9(1).
    PMID: 36661809 DOI: 10.3390/gels9010043
    Bilayer/multilayer tablets have been introduced to formulate incompatible components for compound preparations, but they are now more commonly used to tailor drug release. This research aimed to formulate a novel gastro-retentive tablet to deliver a combination of a fixed dose of two drugs to eliminate Helicobacter pylori (H. pylori) in the gastrointestinal tract. The bilayer tablets were prepared by means of the direct compression technique. The controlled-release bilayer tablets were prepared using various hydrophilic swellable polymers (sodium alginate, chitosan, and HPMC-K15M) alone and in combination to investigate the percent of swelling behavior and average drug release. The weight of the controlled-release floating layer was 500 mg, whereas the weight of the floating tablets of pantoprazole was 100 mg. To develop the most-effective formulation, the effects of the experimental components on the floating lag time, the total floating time, T 50%, and the amount of drug release were investigated. The drugs' and excipients' compatibilities were evaluated using ATR-FTIR and DSC. Pre-compression and post-compression testing were carried out for the prepared tablets, and they were subjected to in vitro characterization studies. The pantoprazole layer of the prepared tablet demonstrated drug release (95%) in 2 h, whereas clarithromycin demonstrated sustained drug release (83%) for up to 24 h (F7). The present study concluded that the combination of sodium alginate, chitosan, and HPMC polymers (1:1:1) resulted in a gastro-retentive and controlled-release drug delivery system of the drug combination. Thus, the formulation of the floating bilayer tablets successfully resulted in a biphasic drug release. Moreover, the formulation (F7) offered the combination of two drugs in a single-tablet formulation containing various polymers (sodium alginate, chitosan, and HPMC polymers) as the best treatment option for local infections such as gastric ulcers.
  9. Bajuri MY, Kim J, Yu Y, Shahul Hameed MS
    Gels, 2023 Jan 13;9(1).
    PMID: 36661832 DOI: 10.3390/gels9010066
    Adipose tissue is an abundant source of extracellular substances that support the tissue repair process. This pilot study was carried out to determine the efficacy of 3D-bioprinted autologous adipose tissue grafts on diabetic foot ulcers (DFUs), with fibrin gel used to stabilise the graft. This was a single-arm pilot study in a tertiary hospital that provides diabetic wound care services. A total of 10 patients with a DFU were enrolled, and the primary endpoint was complete healing within 12 weeks. The secondary endpoints were wound size reduction, time to healing, and adverse events. Seven out of ten patients showed complete healing of their DFU within 12 weeks (at 2, 4, 5, 10, and 12 weeks, respectively). The wound size reduction rate was significantly and progressively reduced over time. According to our data, autologous adipose tissue grafting using a 3D bioprinter, with the addition of fibrin gel that acts as a scaffold, promotes wound healing with high-quality skin reconstruction. Throughout this study period, no adverse events were observed.
  10. Nawaz A, Latif MS, Shah MKA, Elsayed TM, Ahmad S, Khan HA
    Gels, 2023 Mar 06;9(3).
    PMID: 36975650 DOI: 10.3390/gels9030201
    Curcumin, a natural phenolic compound, exhibits poor absorption and extensive first pass metabolism after oral administration. In the present study, curcumin-chitosan nanoparticles (cur-cs-np) were prepared and incorporated into ethyl cellulose patches for the management of inflammation via skin delivery. Ionic gelation method was used for the preparation of nanoparticles. The prepared nanoparticles were evaluated for size, zetapotential, surface morphology, drug content, and % encapsulation efficiency. The nanoparticles were then incorporated into ethyl cellulose-based patches using solvent evaporation technique. ATR-FTIR was used to study/assess incompatibility between drug and excipients. The prepared patches were evaluated physiochemically. The in vitro release, ex vivo permeation, and skin drug retention studies were carried out using Franz diffusion cells and rat skin as permeable membrane. The prepared nanoparticles were spherical, with particle size in the range of 203-229 nm, zetapotential 25-36 mV, and PDI 0.27-0.29 Mw/Mn. The drug content and %EE were 53% and 59%. Nanoparticles incorporated patches are smooth, flexible, and homogenous. The in vitro release and ex vivo permeation of curcumin from nanoparticles were higher than the patches, whereas the skin retention of curcumin was significantly higher in case of patches. The developed patches deliver cur-cs-np into the skin, where nanoparticles interact with skin negative charges and hence result in higher and prolonged retention in the skin. The higher concentration of drug in the skin helps in better management of inflammation. This was shown by anti-inflammatory activity. The inflammation (volume of paw) was significantly reduced when using patches as compared to nanoparticles. It was concluded that the incorporation of cur-cs-np into ethyl cellulose-based patches results in controlled release and hence enhanced anti-inflammatory activity.
  11. Kurniawansyah IS, Rusdiana T, Sopyan I, Desy Arya IF, Wahab HA, Nurzanah D
    Gels, 2023 Aug 10;9(8).
    PMID: 37623100 DOI: 10.3390/gels9080645
    In recent years, in situ gel delivery systems have received a great deal of attention among pharmacists. The in situ gelation mechanism has several advantages over ointments, the most notable being the ability to provide regular and continuous drug delivery with no impact on visual clarity. Bioavailability, penetration, duration, and maximum medication efficacy are all improved by this mechanism. Our review systematically synthesizes and discusses comparisons between three types of in situ gelling system according to their phase change performance based on the physicochemical aspect from publications indexed in the Pubmed, ResearchGate, Scopus, Elsevier, and Google Scholar databases. An optimal temperature-sensitive in situ gelling solution must have a phase change temperature greater than ambient temperature (25 °C) to be able to be readily delivered to the eye; hence, it was fabricated at 35 °C, which is the precorneal temperature. In a pH-sensitive gelling system, a gel develops immediately when the bio-stimuli come into contact with it. An in situ gelling system with ionic strength-triggered medication can also perhaps be used in optical drug-delivery mechanisms. In studies about the release behavior of drugs from in situ gels, different models have been used such as zero-order kinetics, first-order kinetics, the Higuchi model, and the Korsmeyer-Peppas, Peppas-Sahlin and Weibull models. In conclusion, the optimum triggering approach for forming gels in situ is determined by a certain therapeutic delivery application combined with the physico-chemical qualities sought.
  12. Al-Saffar FY, Wong LS, Paul SC
    Gels, 2023 Jul 28;9(8).
    PMID: 37623068 DOI: 10.3390/gels9080613
    Concrete as a building material is susceptible to degradation by environmental threats such as thermal diffusion, acid and sulphate infiltration, and chloride penetration. Hence, the inclusion of nanomaterials in concrete has a positive effect in terms of promoting its mechanical strength and durability performance, as well as resulting in energy savings due to reduced cement consumption in concrete production. This review article discussed the novel advances in research regarding C-S-H gel promotion and concrete durability improvement using nanomaterials. Basically, this review deals with topics relevant to the influence of nanomaterials on concrete's resistance to heat, acid, sulphate, chlorides, and wear deterioration, as well as the impact on concrete microstructure and chemical bonding. The significance of this review is a critical discussion on the cementation mechanism of nanoparticles in enhancing durability properties owing to their nanofiller effect, pozzolanic reactivity, and nucleation effect. The utilization of nanoparticles enhanced the hydrolysis of cement, leading to a rise in the production of C-S-H gel. Consequently, this improvement in concrete microstructure led to a reduction in the number of capillary pores and pore connectivity, thereby improving the concrete's water resistance. Microstructural and chemical evidence obtained using SEM and XRD indicated that nanomaterials facilitated the formation of cement gel either by reacting pozzolanically with portlandite to generate more C-S-H gel or by functioning as nucleation sites. Due to an increased rate of C-S-H gel formation, concrete enhanced with nanoparticles exhibited greater durability against heat damage, external attack by acids and sulphates, chloride diffusion, and surface abrasion. The durability improvement following nanomaterial incorporation into concrete can be summarised as enhanced residual mechanical strength, reduced concrete mass loss, reduced diffusion coefficients for thermal and chloride, improved performance against sulphates and acid attack, and increased surface resistance to abrasion.
  13. Nordin AH, Husna SMN, Ahmad Z, Nordin ML, Ilyas RA, Azemi AK, et al.
    Gels, 2023 Mar 15;9(3).
    PMID: 36975676 DOI: 10.3390/gels9030227
    A key element in ensuring successful immunization is the efficient delivery of vaccines. However, poor immunogenicity and adverse inflammatory immunogenic reactions make the establishment of an efficient vaccine delivery method a challenging task. The delivery of vaccines has been performed via a variety of delivery methods, including natural-polymer-based carriers that are relatively biocompatible and have low toxicity. The incorporation of adjuvants or antigens into biomaterial-based immunizations has demonstrated better immune response than formulations that just contain the antigen. This system may enable antigen-mediated immunogenicity and shelter and transport the cargo vaccine or antigen to the appropriate target organ. In this regard, this work reviews the recent applications of natural polymer composites from different sources, such as animals, plants, and microbes, in vaccine delivery systems.
  14. Nordin AH, Ahmad Z, Husna SMN, Ilyas RA, Azemi AK, Ismail N, et al.
    Gels, 2023 Feb 01;9(2).
    PMID: 36826291 DOI: 10.3390/gels9020121
    Natural polymers have received a great deal of interest for their potential use in the encapsulation and transportation of pharmaceuticals and other bioactive compounds for disease treatment. In this perspective, the drug delivery systems (DDS) constructed by representative natural polymers from animals (gelatin and hyaluronic acid), plants (pectin and starch), and microbes (Xanthan gum and Dextran) are provided. In order to enhance the efficiency of polymers in DDS by delivering the medicine to the right location, reducing the medication's adverse effects on neighboring organs or tissues, and controlling the medication's release to stop the cycle of over- and under-dosing, the incorporation of Fe3O4 magnetic nanoparticles with the polymers has engaged the most consideration due to their rare characteristics, such as easy separation, superparamagnetism, and high surface area. This review is designed to report the recent progress of natural polymeric Fe3O4 magnetic nanoparticles in drug delivery applications, based on different polymers' origins.
  15. Md S, Alhakamy NA, Neamatallah T, Alshehri S, Mujtaba MA, Riadi Y, et al.
    Gels, 2021 Nov 24;7(4).
    PMID: 34842729 DOI: 10.3390/gels7040230
    The aim of this study was to prepare and evaluate α-mangostin-loaded polymeric nanoparticle gel (α-MNG-PLGA) formulation to enhance α-mangostin delivery in an epidermal carcinoma. The poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were developed using the emulsion-diffusion-evaporation technique with a 3-level 3-factor Box-Behnken design. The NPs were characterized and evaluated for particle size distribution, zeta potential (mV), drug release, and skin permeation. The formulated PLGA NPs were converted into a preformed carbopol gel base and were further evaluated for texture analysis, the cytotoxic effect of PLGA NPs against B16-F10 melanoma cells, and in vitro radical scavenging activity. The nanoscale particles were spherical, consistent, and average in size (168.06 ± 17.02 nm), with an entrapment efficiency (EE) of 84.26 ± 8.23% and a zeta potential of -25.3 ± 7.1 mV. Their drug release percentages in phosphate-buffered solution (PBS) at pH 7.4 and pH 6.5 were 87.07 ± 6.95% and 89.50 ± 9.50%, respectively. The release of α-MNG from NPs in vitro demonstrated that the biphasic release system, namely, immediate release in the initial phase, was accompanied by sustained drug release. The texture study of the developed α-MNG-PLGA NPs gel revealed its characteristics, including viscosity, hardness, consistency, and cohesiveness. The drug flux from α-MNG-PLGA NPs gel and α-MNG gel was 79.32 ± 7.91 and 16.88 ± 7.18 µg/cm2/h in 24 h, respectively. The confocal study showed that α-MNG-PLGA NPs penetrated up to 230.02 µm deep into the skin layer compared to 15.21 µm by dye solution. MTT assay and radical scavenging potential indicated that α-MNG-PLGA NPs gel had a significant cytotoxic effect and antioxidant effect compared to α-MNG gel (p < 0.05). Thus, using the developed α-MNG-PLGA in treating skin cancer could be a promising approach.
  16. Mohapatra S, Mirza MA, Hilles AR, Zakir F, Gomes AC, Ansari MJ, et al.
    Gels, 2021 Nov 12;7(4).
    PMID: 34842705 DOI: 10.3390/gels7040207
    Hydrogels are known for their leading role in biomaterial systems involving pharmaceuticals that fascinate material scientists to work on the wide variety of biomedical applications. The physical and mechanical properties of hydrogels, along with their biodegradability and biocompatibility characteristics, have made them an attractive and flexible tool with various applications such as imaging, diagnosis and treatment. The water-cherishing nature of hydrogels and their capacity to swell-contingent upon a few ecological signals or the simple presence of water-is alluring for drug conveyance applications. Currently, there are several problems relating to drug delivery, to which hydrogel may provide a possible solution. Hence, it is pertinent to collate updates on hydrogels pertaining to biomedical applications. The primary objective of this review article is to garner information regarding classification, properties, methods of preparations, and of the polymers used with particular emphasis on injectable hydrogels. This review also covers the regulatory and other commerce specific information. Further, it enlists several patents and clinical trials of hydrogels with related indications and offers a consolidated resource for all facets associated with the biomedical hydrogels.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links