Affiliations 

  • 1 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
  • 2 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia. Electronic address: aishahaj@utm.my
  • 3 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB, 2134, Airport Road, Sokoto, Nigeria
  • 4 Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
  • 5 Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
  • 6 Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
Environ Res, 2023 Jan 01;216(Pt 1):114422.
PMID: 36162476 DOI: 10.1016/j.envres.2022.114422

Abstract

Nowadays, emerging hazardous pollutants have caused many harmful effects on the environment and human health, calling for the state of the art methods for detection, qualification, and treatment. Metal-organic frameworks are porous, flexible, and versatile materials with unique structural properties, which can solve such problems. In this work, we reviewed the synthesis, activation, and characterization, and potential applications of NH2-MIL-53(Al). This material exhibited intriguing breathing effects, and obtained very high surface areas (182.3-1934 m2/g) with diverse morphologies. More importantly, NH2-MIL-53(Al) based materials could be used for the detection and removal of various toxic pollutants such as organic dyes, pharmaceuticals, herbicides, insecticides, phenols, heavy metals, and fluorides. We shed light on plausible adsorption mechanisms such as hydrogen bonds, π-π stacking interactions, and electrostatic interactions onto NH2-MIL-53(Al) adsorbents. Interestingly, NH2-MIL-53(Al) based adsorbents could be recycled for many cycles with high stability. This review also recommended that NH2-MIL-53(Al) based materials can be a good platform for the environmental remediation fields.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.