Affiliations 

  • 1 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
  • 2 Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia
Polymers (Basel), 2022 Dec 16;14(24).
PMID: 36559892 DOI: 10.3390/polym14245524

Abstract

Water pollution issues, particularly those caused by heavy metal ions, have been significantly growing. This paper combined biopolymers such as sodium alginate (SA) and β-cyclodextrin (β-CD) to improve adsorption performance with the help of calcium ion as the cross-linked agent. Moreover, the addition of carbon nanotubes (CNTs) into the hybrid hydrogel matrix was examined. The adsorption of nickel(II) was thoroughly compared between pristine sodium alginate/β-cyclodextrin (SA-β-CD) and sodium alginate/β-cyclodextrin immobilized carbon nanotubes (SA-β-CD/CNTs) hydrogel. Both hydrogels were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectral analysis, field emission scanning electron microscopy (FESEM), electron dispersive spectroscopy (EDX), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed SA-β-CD/CNTs hydrogel exhibits excellent thermal stability, high specific surface area and large porosity compared with SA-β-CD hydrogel. Batch experiments were performed to study the effect of several adsorptive variables such as initial concentration, pH, contact time and temperature. The adsorption performance of the prepared SA-β-CD/CNTs hydrogel was comprehensively reported with maximum percentage removal of up to 79.86% for SA-β-CD/CNTs and 69.54% for SA-β-CD. The optimum adsorption conditions were reported when the concentration of Ni(II) solution was maintained at 100 ppm, pH 5, 303 K, and contacted for 120 min with a 1000 mg dosage. The Freundlich isotherm and pseudo-second order kinetic model are the best fits to describe the adsorption behavior. A thermodynamic study was also performed. The probable interaction mechanisms that enable the successful binding of Ni(II) on hydrogels, including electrostatic attraction, ion exchange, surface complexation, coordination binding and host-guest interaction between the cationic sites of Ni(II) on both SA-β-CD and SA-β-CD/CNTs hydrogel during the adsorption process, were discussed. The regeneration study also revealed the high efficiency of SA-β-CD/CNTs hydrogel on four successive cycles compared with SA-β-CD hydrogel. Therefore, this work signifies SA-β-CD/CNTs hydrogel has great potential to remove Ni(II) from an aqueous environment compared with SA-β-CD hydrogel.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.