Affiliations 

  • 1 China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China
  • 2 Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
  • 3 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
Energy (Oxf), 2022 Feb 15;241:122801.
PMID: 36570560 DOI: 10.1016/j.energy.2021.122801

Abstract

This review covers the recent advancements in selected emerging energy sectors, emphasising carbon emission neutrality and energy sustainability in the post-COVID-19 era. It benefited from the latest development reported in the Virtual Special Issue of ENERGY dedicated to the 6th International Conference on Low Carbon Asia and Beyond (ICLCA'20) and the 4th Sustainable Process Integration Laboratory Scientific Conference (SPIL'20). As nations bind together to tackle global climate change, one of the urgent needs is the energy sector's transition from fossil-fuel reliant to a more sustainable carbon-free solution. Recent progress shows that advancement in energy efficiency modelling of components and energy systems has greatly facilitated the development of more complex and efficient energy systems. The scope of energy system modelling can be based on temporal, spatial and technical resolutions. The emergence of novel materials such as MXene, metal-organic framework and flexible phase change materials have shown promising energy conversion efficiency. The integration of the internet of things (IoT) with an energy storage system and renewable energy supplies has led to the development of a smart energy system that effectively connects the power producer and end-users, thereby allowing more efficient management of energy flow and consumption. The future smart energy system has been redefined to include all energy sectors via a cross-sectoral integration approach, paving the way for the greater utilization of renewable energy. This review highlights that energy system efficiency and sustainability can be improved via innovations in smart energy systems, novel energy materials and low carbon technologies. Their impacts on the environment, resource availability and social well-being need to be holistically considered and supported by diverse solutions, in alignment with the sustainable development goal of Affordable and Clean Energy (SDG 7) and other related SDGs (1, 8, 9, 11,13,15 and 17), as put forth by the United Nations.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.