(1) Background: Alpha (α)-thalassaemia is a genetic disorder that affects 5% of the world population. Deletional or nondeletional mutations of one or both HBA1 and HBA2 on chromosome 16 will result in reduced production of α-globin chains, a component of haemoglobin (Hb) that is required for the formation of red blood cells (RBCs). This study aimed to determine the prevalence, haematological and molecular characterisations of α-thalassaemia. (2) Method: The parameters were based on full blood count, high-performance liquid chromatography and capillary electrophoresis. The molecular analysis involved gap-polymerase chain reaction (PCR), multiplex amplification refractory mutation system-PCR, multiplex ligation-dependent probe amplification and Sanger sequencing. (3) Results: With a total cohort of 131 patients, the prevalence of α-thalassaemia was 48.9%, leaving the remaining 51.1% with potentially undetected α gene mutations. The following genotypes were detected: -α3.7/αα (15.4%), -α4.2/αα (3.7%), --SEA/αα (7.4%), αCSα/αα (10.3%), αAdanaα/αα (0.7%), αQuong Szeα/αα (1.5%), -α3.7/-α3.7 (0.7%), αCSα/αCSα (0.7%), -α4.2/αCSα (0.7%), -SEA/αCSα (1.5%), -SEA/αQuong Szeα (0.7%), -α3.7/αAdanaα (0.7%), --SEA/-α3.7 (2.2%) and αCSα/αAdanaα (0.7%). Indicators such as Hb (p = 0.022), mean corpuscular volume (p = 0.009), mean corpuscular haemoglobin (p = 0.017), RBC (p = 0.038) and haematocrit (p = 0.058) showed significant changes among patients with deletional mutations, but not between patients with nondeletional mutations. (4) Conclusions: A wide range of haematological parameters was observed among patients, including those with the same genotype. Thus, a combination of molecular technologies and haematological parameters is necessary for the accurate detection of α-globin chain mutations.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.