Displaying all 3 publications

Abstract:
Sort:
  1. Vijian D, Chinni SV, Yin LS, Lertanantawong B, Surareungchai W
    Biosens Bioelectron, 2016 Mar 15;77:805-11.
    PMID: 26513287 DOI: 10.1016/j.bios.2015.10.057
    The ability of a diagnostic test to detect multiple pathogens simultaneously is useful to obtain meaningful information for clinical treatment and preventive measures. We report a highly sensitive and specific electrochemical biosensor assay for simultaneous detection of three gene targets using quantum dots (QDs). The targets are novel non-protein coding RNA (npcRNA) sequences of Vibrio cholerae, Salmonella sp. and Shigella sp., which cause diarrheal diseases. QDs (PbS, CdS, ZnS) were synthesized and functionalized with DNA probes that were specific to each pathogen. Electrochemical detection of QDs was performed using square wave anodic stripping voltammetry (SWASV). The QDs gave distinct peaks at 0.5 V (PbS), 0.75 V (CdS) and 1.1 V (ZnS). There was no interference in signal response when all three QDs were mixed and detected simultaneously. The detection limits of single and multiplex assays with linear targets and PCR products were in the attomolar ranges. The high assay sensitivity, in combination with specific npcRNA sequences as novel diagnostic targets, makes it a viable tool for detecting pathogens from food, environment and clinical samples.
  2. Vijian D, Wan Ab Rahman WS, Ponnuraj KT, Zulkafli Z, Mohd Noor NH
    Medeni Med J, 2021;36(3):257-269.
    PMID: 34915685 DOI: 10.5222/MMJ.2021.14603
    Alpha thalassemia (α-thalassemia) is an autosomal recessive disorder due to the reduction or absence of α globin chain production. Laboratory diagnosis of α-thalassemia requires molecular analysis for the confirmatory diagnosis. A screening test, comprising complete blood count, blood smear and hemoglobin quantification by high performance liquid chromatography and capillary electrophoresis, may not possibly detect all the thalassemia diseases. This review focused on the molecular techniques used to detect α-thalassemia, and the advantages and disadvantages of each technique were highlighted. Multiplex gap-polymerase chain reaction, single-tube multiplex polymerase chain reaction, multiplex ligation-dependent probe amplification, and loop-mediated isothermal amplification were used to detect common deletion of α-thalassemia. Furthermore, the reverse dot blot analysis and a single tube multiplex polymerase chain reaction could detect non-deletion mutation of the α-globin gene. Sanger sequencing is widely used to detect non-deletion mutations of α-thalassemia. Recently, next-generation sequencing was introduced in the diagnosis of both deletion and point mutations of α-thalassemia. Despite the advantages and disadvantages of different techniques, the routine method employed in the laboratory should be based on the facility, expertise, available equipment, and economic conditions.
  3. Vijian D, Wan Ab Rahman WS, Ponnuraj KT, Zulkafli Z, Bahar R, Yasin N, et al.
    Diagnostics (Basel), 2023 Feb 27;13(5).
    PMID: 36900038 DOI: 10.3390/diagnostics13050894
    (1) Background: Alpha (α)-thalassaemia is a genetic disorder that affects 5% of the world population. Deletional or nondeletional mutations of one or both HBA1 and HBA2 on chromosome 16 will result in reduced production of α-globin chains, a component of haemoglobin (Hb) that is required for the formation of red blood cells (RBCs). This study aimed to determine the prevalence, haematological and molecular characterisations of α-thalassaemia. (2) Method: The parameters were based on full blood count, high-performance liquid chromatography and capillary electrophoresis. The molecular analysis involved gap-polymerase chain reaction (PCR), multiplex amplification refractory mutation system-PCR, multiplex ligation-dependent probe amplification and Sanger sequencing. (3) Results: With a total cohort of 131 patients, the prevalence of α-thalassaemia was 48.9%, leaving the remaining 51.1% with potentially undetected α gene mutations. The following genotypes were detected: -α3.7/αα (15.4%), -α4.2/αα (3.7%), --SEA/αα (7.4%), αCSα/αα (10.3%), αAdanaα/αα (0.7%), αQuong Szeα/αα (1.5%), -α3.7/-α3.7 (0.7%), αCSα/αCSα (0.7%), -α4.2/αCSα (0.7%), -SEA/αCSα (1.5%), -SEA/αQuong Szeα (0.7%), -α3.7/αAdanaα (0.7%), --SEA/-α3.7 (2.2%) and αCSα/αAdanaα (0.7%). Indicators such as Hb (p = 0.022), mean corpuscular volume (p = 0.009), mean corpuscular haemoglobin (p = 0.017), RBC (p = 0.038) and haematocrit (p = 0.058) showed significant changes among patients with deletional mutations, but not between patients with nondeletional mutations. (4) Conclusions: A wide range of haematological parameters was observed among patients, including those with the same genotype. Thus, a combination of molecular technologies and haematological parameters is necessary for the accurate detection of α-globin chain mutations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links