Affiliations 

  • 1 Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia t_selvi@um.edu.my
  • 2 School of Energy and Chemical Engineering, Xiamen University Malaysia Jalan Sunsuria Bandar Sunsuria Selangor Darul Ehsan 43900 Malaysia
RSC Adv, 2023 Mar 08;13(12):7921-7928.
PMID: 36909754 DOI: 10.1039/d3ra00077j

Abstract

A hybrid piezo/triboelectric nanogenerator (H/P-TENG) is designed for mechanical energy harvesting using polymer ceramic composite films; polydimethylsiloxane/Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (PDMS/BZT-BCT) and polyvinyl alcohol (PVA). A lead-free BZT-BCT piezoelectric ceramic was prepared via solid-state method and blended into PDMS to form a series of polymer-ceramic composite films, ranging from 5% to 30% by weight. The films were forward/reverse poled with corona poling and their electrical properties were compared to non-poled samples. The H/P-TENG constructed with forward-poled 15 wt% BZT-BCT in PDMS achieved the highest open-circuit voltage, V oc of 127 V, short-circuit current density, J sc of 67 mA m-2, short-circuit charge density, Q sc of 118 μC m-2, and peak power density of 7.5 W m-2, an increase of 190% over pristine PDMS-based TENG. It was discovered that incorporating BZT-BCT into the PDMS matrix improved the triboelectric properties of PDMS. The overlapping electron cloud (OEC) model was used to explain the enhancement and the effect of poling direction of the PDMS/BZT-BCT composite used in H/P-TENG, providing fundamental knowledge of the influence of piezoelectric polarisation on contact electrification.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.