Affiliations 

  • 1 Department of Physics Education, Faculty of Tarbiyah, Universitas Islam Negeri Mahmud Yunus, Batusangkar 27213, West Sumatera, Indonesia
  • 2 Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • 3 Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
  • 4 Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • 5 Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
Nanomaterials (Basel), 2023 Apr 05;13(7).
PMID: 37049374 DOI: 10.3390/nano13071281

Abstract

The crystallinity properties of perovskite influence their optoelectrical performance in solar cell applications. We optimized the grain shape and crystallinity of perovskite film by annealing treatment from 130 to 170 °C under high humidity (relative humidity of 70%). We found that the grain size, grain interface, and grain morphology of the perovskite are optimized when the sample was annealed at 150 °C for 1 h in the air. At this condition, the perovskite film is composed of 250 nm crystalline shape grain and compact inter-grain structure with an invincible grain interface. Perovskite solar cells device analysis indicated that the device fabricated using the samples annealed at 150 °C produced the highest power conversion efficiency, namely 17.77%. The open circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of the device are as high as 1.05 V, 22.27 mA/cm2, and 0.76, respectively. Optoelectrical dynamic analysis using transient photoluminescence and electrochemical impedance spectroscopies reveals that (i) carrier lifetime in the champion device can be up to 25 ns, which is almost double the carrier lifetime of the sample annealed at 130 °C. (ii) The interfacial charge transfer resistance is low in the champion device, i.e., ~20 Ω, which has a crystalline grain morphology, enabling active photocurrent extraction. Perovskite's behavior under annealing treatment in high humidity conditions can be a guide for the industrialization of perovskite solar cells.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.