Affiliations 

  • 1 Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
  • 2 Faculty of Information Technology, HUTECH University, Ho Chi Minh City 700000, Vietnam; Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia; DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada, Spain; Regional Research Center, Iwate Prefectural University, Iwate 0200611, Japan. Electronic address: h.fujita@hutech.edu.vn
Comput Methods Programs Biomed, 2023 Sep;239:107623.
PMID: 37276760 DOI: 10.1016/j.cmpb.2023.107623

Abstract

BACKGROUND AND OBJECTIVES: Prediction of patient deterioration is essential in medical care, and its automation may reduce the risk of patient death. The precise monitoring of a patient's medical state requires devices placed on the body, which may cause discomfort. Our approach is based on the processing of long-term ballistocardiography data, which were measured using a sensory pad placed under the patient's mattress.

METHODS: The investigated dataset was obtained via long-term measurements in retirement homes and intensive care units (ICU). Data were measured unobtrusively using a measuring pad equipped with piezoceramic sensors. The proposed approach focused on the processing methods of the measured ballistocardiographic signals, Cartan curvature (CC), and Euclidean arc length (EAL).

RESULTS: For analysis, 218,979 normal and 216,259 aberrant 2-second samples were collected and classified using a convolutional neural network. Experiments using cross-validation with expert threshold and data length revealed the accuracy, sensitivity, and specificity of the proposed method to be 86.51 CONCLUSIONS: The proposed method provides a unique approach for an early detection of health concerns in an unobtrusive manner. In addition, the suitability of EAL over the CC was determined.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.