Affiliations 

  • 1 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
  • 2 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh. Electronic address: subash@unimap.edu.my
Int J Biol Macromol, 2023 Aug 30;247:125740.
PMID: 37423441 DOI: 10.1016/j.ijbiomac.2023.125740

Abstract

Anticoagulant therapies are crucial in the management of surgical complications as well as the prophylaxis of thrombosis. Many studies are being conducted on the Habu snake-venom anticoagulant, FIX-binding protein (FIX-Bp), for its greater potency and strong affinity to FIX clotting factor. On the other hand, the capacity to promptly reverse such acute anticoagulation is equally important. Combining a reversible anticoagulant with FIX-Bp may be advantageous in maintaining the balance between adequate anticoagulation and repealing when necessary. In this study, authors integrated FIX-Bp and RNA aptamer-based anticoagulants into a single target, FIX clotting factor, in order to achieve a robust anticoagulant effect. An in-silico and electrochemical approach were used to investigate the combination of FIX-Bp and RNA aptamers as a bivalent anticoagulant and to verify the competing or predominant binding sites of each anticoagulant. The in-silico analysis discovered that both the venom- and aptamer-anticoagulant had a strong affinity for the FIX protein at the Gla-domain and EGF-1 domain by holding 9 conventional hydrogen bonds with the binding energy of -34.859 kcal/mol. The electrochemical technique verified that both anticoagulants had different binding sites. The impedance load upon RNA aptamer binding to FIX protein was 14 %, whereas the addition of FIX-Bp caused a significant impedance rise of 37 %. This indicates that the addition of aptamers prior to FIX-Bp is a promising strategy for the conception of a hybrid anticoagulant.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.