Affiliations 

  • 1 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
  • 2 Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
Heliyon, 2023 Jul;9(7):e18120.
PMID: 37496898 DOI: 10.1016/j.heliyon.2023.e18120

Abstract

The bone marrow (BM) plays a pivotal role in homeostasis by supporting hematopoiesis and immune cells' activation, maturation, interaction, and deployment. "BMSC-derived secretome" refers to the complete repertoire of secreted molecules, including nucleic acids, chemokines, growth factors, cytokines, and lipids from BM-derived mesenchymal stem cells (BMSCs). BMSC-derived secretomes are the current molecular platform for acellular therapy. Secretomes are highly manipulable and can be synthesised in vast quantities using commercially accessible cell lines in the laboratory. Secretomes are less likely to elicit an immunological response because they contain fewer surface proteins. Moreover, the delivery of BMSC-derived secretomes has been shown in numerous studies to be an effective, cell-free therapy method for alleviating the symptoms of inflammatory and degenerative diseases. As a result, secretome delivery from BMSCs has the same therapeutic effects as BMSCs transplantation but may have fewer adverse effects. Additionally, BMSCs' secretome has therapeutic promise for organoids and parabiosis studies. This review focuses on recent advances in secretome-based cell-free therapy, including its manipulation, isolation, characterisation, and delivery systems. The diverse bioactive molecules of secretomes that successfully treat inflammatory and degenerative diseases of the musculoskeletal, cardiovascular, nervous, respiratory, reproductive, gastrointestinal, and anti-ageing systems were also examined in this review. However, secretome-based therapy has some unfavourable side effects that may restrict its uses. Some of the adverse effects of this modal therapy were briefly mentioned in this review.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.