BACKGROUND AND AIM: Market demand for safe feed and food supply and consumer preferences for safe and healthy products are increasing. Control measures to counter threats to the feed supply need to be implemented as early as possible to prevent economic losses. Mycotoxins produced by certain groups of fungi are a problem that can disrupt the feed supply or pose a threat to the health of animals and humans. Biological control to detoxify contaminated feed ingredients can be carried out on a large scale economically. For example, lactic acid bacteria (LAB) can act as biological agents for eliminating mycotoxins. This study aimed to clarify the value of screening LAB to inhibit Aspergillus flavus growth and detoxify aflatoxin B1 (AFB1).
MATERIALS AND METHODS: In this study, using a completely randomized design with three replications, five isolates of LAB (LA.1, LA.6, LA.8, LA.12, and LA.22) along with their supernatants were tested qualitatively and quantitatively for their ability to counter mycotoxins using A. flavus and corn kernels. The isolates with the best activity were identified by sequencing 16S rDNA.
RESULTS: The results showed that the five LAB isolates can inhibit the growth of A. flavus and detoxify AFB1. Among these isolates, LA.12 showed the best performance, followed by LA.22, LA.8, LA.6, and then LA.1. The sequencing results confirmed that LA.12 was Lactobacillus harbinensis strain 487.
CONCLUSION: All of the isolates in this study have the potential as biological agents for detoxifying AFB1, with isolate LA.12 appearing to be the most promising biodetoxification agent for feed (AFB1 in corn) based on its ability to inhibit pathogenic fungi.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.