The rise of targeted advertising has led to frequent privacy data leaks, as advertisers are reluctant to share information to safeguard their interests. This has resulted in isolated data islands and model heterogeneity challenges. To address these issues, we have proposed a C-means clustering algorithm based on maximum average difference to improve the evaluation of the difference in distribution between local and global parameters. Additionally, we have introduced an innovative dynamic selection algorithm that leverages knowledge distillation and weight correction to reduce the impact of model heterogeneity. Our framework was tested on various datasets and its performance was evaluated using accuracy, loss, and AUC (area under the ROC curve) metrics. Results showed that the framework outperformed other models in terms of higher accuracy, lower loss, and better AUC while requiring the same computation time. Our research aims to provide a more reliable, controllable, and secure data sharing framework to enhance the efficiency and accuracy of targeted advertising.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.