Affiliations 

  • 1 Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia nazamid@upm.edu.my wanzunairah@upm.edu.my +603-9769-1002 +603-9769-8352
  • 2 Department of Food Science, University of Arkansas Fayetteville AR 72704 USA
  • 3 Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
RSC Adv, 2021 Nov 29;11(61):38565-38577.
PMID: 35493245 DOI: 10.1039/d1ra06872e

Abstract

Ambient-storage-friendly, ready-to-eat (RTE) meat products are convenient in emergencies, such as earthquakes, flash floods and the current global Covid-19 lockdown. However, given the processing and long storage time of such food products, the lipid and protein components may be more susceptible to oxidation. Chicken serunding is a low-moisture, high-lipid, high-protein, RTE product that is prone to lipid oxidation and protein co-oxidation, causing product quality deterioration. The present study assessed the effects of storage temperature (25, 40, 60 °C), antioxidant (butylated hydroxyanisole, BHA), and multilayer packaging materials [metallised polyethene terephthalate (MPET) and aluminium] on the lipid oxidation and protein co-oxidation of chicken serunding during six months of storage. All lipid and protein markers elevated with increasing temperature (25 < 40 < 60 °C), indicating that storage of low-moisture meat at high temperature is not feasible. BHA was effective against lipid oxidation, as indicated by the significantly lower (p <0.05) extracted lipid content and delayed formation of malondialdehyde, a secondary lipid oxidation product. However, BHA is not effective against protein co-oxidation, as shown by the insignificant (p >0.05) effect on preventing tryptophan loss, protein carbonyl formation and Schiff base accumulation. MPET packaging with a superior light and oxygen barrier provided significant protection (p <0.05) compared to aluminium. In conclusion, low temperature (25 °C) storage of low-moisture, high-lipid, high-protein, cooked meat systems in MPET packaging is recommended for long-term storage to delay the progression of lipid oxidation and protein co-oxidation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications