Affiliations 

  • 1 Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia
  • 2 Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Republic of Singapore
  • 3 Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address: wongtinwui@uitm.edu.my
Int J Biol Macromol, 2023 Sep 21;253(Pt 4):126991.
PMID: 37739286 DOI: 10.1016/j.ijbiomac.2023.126991

Abstract

Solid particles ≤5 μm are essential to allow lower lung deposition and macrophage phagocytosis of anti-tubercular drugs. Decorating liquid nanoemulsion of anti-tubercular drug with macrophage-specific chitosan and chitosan-folate conjugate and spray drying the nanoemulsion with lactose produced oversized solid particles due to polysaccharide binding effects. This study designed solid nanoemulsion using lactose as the primary solid carrier and explored additives and spray-drying variables to reduce the binding and particle growth effects of chitosan. Deposition of magnesium stearate on lactose negated chitosan-inducible excessive lactose-liquid nanoemulsion binding and solid particle growth. Moderating the adhesion of chitosan-decorated liquid nanoemulsion onto lactose produced smooth-surface solid microparticles (size: 5.45 ± 0.26 μm; roughness: ∼80 nm) with heterogeneous size (span: 1.87 ± 1.21) through plasticization of constituent materials of nanoemulsion and lactose involving OH/N-H, C-H, CONH and/or COO moieties. Smaller solid particles could attach onto the larger particles with minimal steric hindrance by smooth surfaces. Together with round solid particulate structures (circularity: 0.919 ± 0.002), good pulmonary inhalation beneficial for treatment of pulmonary tuberculosis as well as other diseases is conferred.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.