Affiliations 

  • 1 Instituto Politécnico Nacional, 27740, Centro de Desarrollo de Productos Bióticos, Carretera Yautepec-Jojutla, Km. 6, Calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos, Mexico, 62731; gmarquezl@ipn.mx
  • 2 Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, 70303, Campo Experimental Valle del Fuerte, CARRETERA INTERNACIONAL MEXICO-NOGALES, KM.1609, Mexico City, Mexico, 04100
  • 3 Instituto Politécnico Nacional, 27740, Yahutepec, Morelos, Mexico; hfloresm@ipn.mx
  • 4 Instituto Politécnico Nacional, 27740, Centro de Desarrollo de Productos Bióticos, Carretera Yautepec-Jojutla, Km. 6, Calle CEPROBI No. 8, Col. San Isidro, Yautepec, Mexico, 62731; asolanob@ipn.mx
Plant Dis, 2023 Sep 27.
PMID: 37755414 DOI: 10.1094/PDIS-04-23-0797-PDN

Abstract

Frangipani (Plumeria rubra L.; Apocynaceae.) is a deciduous ornamental shrub, native to tropical America and widely distributed in tropical and subtropical regions. In Mexico, P. rubra is also used in traditional medicine and religious ceremonies. In November 2018-2022, rust-diseased leaves of P. rubra were found in Yautepec (18°49'29"N; 99°05'46"W), Morelos, Mexico. Symptoms of the disease included small chlorotic spots on the adaxial surface of the infected leaves, which as the disease progressed turned into necrotic areas surrounded by a chlorotic halo. The chlorotic spots observed on the adaxial leaf surface coincided with numerous erumpent uredinia of bright orange color on the abaxial leaf surface. As a result of the infection, foliar necrosis and leaves abscission was observed. Of the 40 sampled trees, 95% showed symptoms of the disease. On microscopic examination of the fungus, bright orange, subepidermal uredinia were observed, which subsequently faded to white. Urediniospores were bright yellow-orange color. They were ellipsoid or globose, sometimes angular, echinulate, (21.5) 26.5 (33.0) × (16.0) 19.0 (23.0) μm in size. Morphological features of the fungus correspond with previous descriptions of Coleosporium plumeriae by Holcomb and Aime (2010) and Soares et al., (2019). A voucher specimen was deposited in the Herbarium of the Departmet of Plant-Insect Interactions at the Biotic Products Development Center of the National Polytechnic Institute under accession no. IPN 10.0113. Species identity was confirmed by amplifying the 5.8S subunit, the ITS 2 region, and part of the 28S region with rust-specific primer Rust2inv (Aime, 2006) and LR6 (Vilgalys and Hester 1990). The sequence was deposited in GenBank (OQ518406) and showed 100% sequence homology (1435/1477bp) with a reference sequence (MG907225) of C. plumeriae from Plumeria spp. (Aime et al. 2018). Pathogenicity was confirmed by spraying a urediniospores suspension of 2×104 spores ml-1 onto ten plants of P. rubra. Six plants were inoculated and sealed in plastic bags, while four noninoculated plants were applied with sterile distilled water. Plants were inoculated at 25°C and held for 48 h in a dew chamber, after this, the plants were transferred to greenhouse conditions (33/span>2°C). The experiment was performed twice. All inoculated plants developed rust symptoms after 14 days, whereas the non-inoculated plants remained symptomless. The recovered fungus was morphologically identical to that observed in the original diseased plants, thus fulfilling Koch's postulates. According to international databases (Crous 2004; Farr and Rossman 2023), C. plumeriae has not been officially reported in Mexico, despite being a prevalent disease. Diseased plants have been collected and deposited in herbaria, unfortunately, these reports lack important information such as geographic location of sampling, pathogenicity tests, or molecular evidence, which are essential for a comprehensive study of the disease in Mexico. To our knowledge, this is the molecular confirmation of Coleosporium plumeriae causing rust of Plumeria rubra in Mexico. Rust of P. rubra caused by C. plumeriae has been previously identified in India, Taiwan, Malaysia, and Indonesia by Baiswar et al. (2008), Chung et al. (2006), Holcomb and Aime (2010) and Soares et al., (2019). This disease causes important economic losses in nurseries, due to the defoliation of infected plants.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.