Affiliations 

  • 1 Faculty of Engineering & Computer Technology, AIMST University, Bedong, Kedah 08100, Malaysia
  • 2 Department of Computer Science Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600124, India
  • 3 Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
  • 4 Department of Information Technology, M.Kumarasamy College of Engineering, Karur, Tamil Nadu 639113, India
  • 5 Department of Information Technology, Panimalar Engineering College, Chennai, Tamil Nadu 600123, India
  • 6 Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh-11545, Saudi Arabia
  • 7 Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh-11451, Saudi Arabia
  • 8 Department of Civil Engineering, University of Houston, Texas, USA
  • 9 Faculty of Mechanical Engineering, Arba Minch Institute of Technology (AMIT) Arba Minch University, Ethiopia
Biomed Res Int, 2022;2022:2003184.
PMID: 35958813 DOI: 10.1155/2022/2003184

Abstract

Prenatal heart disease, generally known as cardiac problems (CHDs), is a group of ailments that damage the heartbeat and has recently now become top deaths worldwide. It connects a plethora of cardiovascular diseases risks to the urgent in need of accurate, trustworthy, and effective approaches for early recognition. Data preprocessing is a common method for evaluating big quantities of information in the medical business. To help clinicians forecast heart problems, investigators utilize a range of data mining algorithms to examine enormous volumes of intricate medical information. The system is predicated on classification models such as NB, KNN, DT, and RF algorithms, so it includes a variety of cardiac disease-related variables. It takes do with an entire dataset from the medical research database of patients with heart disease. The set has 300 instances and 75 attributes. Considering their relevance in establishing the usefulness of alternate approaches, only 15 of the 75 criteria are examined. The purpose of this research is to predict whether or not a person will develop cardiovascular disease. According to the statistics, naïve Bayes classifier has the highest overall accuracy.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.