Affiliations 

  • 1 G.T.N Arts College, Dindigul 624 005 Tamil Nadu, India
  • 2 Department of Allied Health Sciences, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India
  • 3 School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang-212013, People's Republic of China
  • 4 Biochemistry Discipline, Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP) Ipoh-30450, Perak, Malaysia
  • 5 Department of Chemistry, Merit Arts and Science College, Idaikal, Ambasamudram-627602, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India
  • 6 Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh-11451, Saudi Arabia
  • 7 Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
  • 8 School of Chemistry and Chemical Engineering, Central South University, Changsha, Changsha, 410083, People's Republic of China
Nanotechnology, 2024 Feb 21;35(19).
PMID: 38320329 DOI: 10.1088/1361-6528/ad26d9

Abstract

The phytochemicals found inCaralluma pauciflorawere studied for their ability to reduce silver nitrate in order to synthesise silver nanoparticles (AgNPs) and characterise their size and crystal structure. Thunbergol, 1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetram, Methyl nonadecanoate, Methyl cis-13,16-Docosadienate, and (1R,4aR,5S)-5-[(E)-5-Hydroxy-3-methylpent were the major compounds identified in the methanol extract by gas chromatography-mass spectrum analysis. UV/Vis spectra, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscope with Energy Dispersive Xâray Analysis (EDAX), Dynamic Light Scattering (DLS) particle size analyser and atomic force microscope (AfM) were used to characterise theCaralluma paucifloraplant extract-based AgNPs. The crystal structure and estimated size of the AgNPs ranged from 20.2 to 43 nm, according to the characterization data. The anti-cancer activity of silver nanoparticles (AgNPs) synthesised fromCaralluma paucifloraextract. The AgNPs inhibited more than 60% of the AGS cell lines and had an IC50 value of 10.9640.318 g, according to the findings. The cells were further examined using fluorescence microscopy, which revealed that the AgNPs triggered apoptosis in the cells. Furthermore, the researchers looked at the levels of reactive oxygen species (ROS) in cells treated with AgNPs and discovered that the existence of ROS was indicated by green fluorescence. Finally, apoptotic gene mRNA expression analysis revealed that three target proteins (AKT, mTOR, and pI3K) were downregulated following AgNP therapy. Overall, the findings imply that AgNPs synthesised from Caralluma pauciflora extract could be used to treat human gastric cancer.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.