Affiliations 

  • 1 Department of Biology, Serdang, Selangor, Malaysia
  • 2 Universiti Putra Malaysia, Department of Biology, Faculty of Science, Serdang, Selangor, Malaysia; baiti.murad@gmail.com
  • 3 Universiti Putra Malaysia, Department of Biology, Faculty of Science, Serdang, Selangor, Malaysia; asmaaris@ymail.com
  • 4 Universiti Putra Malaysia, Department of Biology, Faculty of Science, Serdang, Selangor, Malaysia; norhidayah@upm.edu.my
Plant Dis, 2022 Sep 19.
PMID: 36122197 DOI: 10.1094/PDIS-06-22-1291-PDN

Abstract

In July 2019 to November 2021, symptoms of fruit rot of Averrhoa bilimbi (commonly known as bilimbi) fruits were observed in Serdang (3°00'05.8"N 101°42'18.4"E) and Tanjong Karang (3°25'55.3"N 101°12'55.7"E), Selangor, Malaysia. External decay showed some yellowish to brownish-red discoloration and inside the fruit there was black powdery sporulation and a brownish decay that measured between 8 - 15 mm wide. Twenty random symptomatic fruits were collected from each location. Small pieces (5 mm) of infected tissues from the fruit rot were surface sterilized for 1 min in 0.5% NaOCl, washed twice with sterile distilled water and cultured onto potato dextrose agar (PDA) and peptone pentachloronitrobenzene agar (PPA). The plates were incubated at 28 ± 1oC under 12 hours light/dark for 7 days. The fungal colonies growing from the plates were purified using hyphal tip technique (Leyronas et al. 2012). A total of 42 fungal isolates were obtained, and the morphology characteristics of six isolates were matched that of Aspergillus niger. The A. niger isolates were further identified based genus and species-specific Internal Transcribed Spacer (ITS) sequencing. Primers ITS1/ITS4, were used to amplify and subsequently sequenced the ITS1-5.8S-ITS2 region (White et al. 1990). Primer ASAP1 (5'-CAGCGAGTACATCACCTTGG-3'), ASAP2 (5'-CCATTGTTGAAAGTTTTAACTGATT-3') was used for Aspergillus species confirmation, primer ASPU (5'-ACTACCGATTGAATGGCTCG-3') / Ni1r (5'-ACGCTTTCAGACAGTGTTCG-3') for A. niger species-specific, ASPU / Af3r (5'-CATACTTTCAGAACAGCGTTCA-3') for A. fumigatus specific-specific and ASPU / Fl2r (5'-TTCACTAGATCAGACAGAGT-3') for A. flavus specific-specific (Sugita et al. 2004). In general, Aspergillus niger isolates grew rapidly on PDA and were visibly white initially then appearing black and powdery on the second day of incubation (Figure 1A). Some isolates grew rapidly (0.71-0.85 cm/day) and have a cottony appearance. The conidia were appeared brown to black, globose and rough with diameter ranging between 4.1-5.2 µm (Figure 1B). The vesicles were hyaline, globose, and brown in color with measurement of 30-75 µm in diameter with uniseriate sterigmata (Figure 1C). The conidial head was brownish black in color and split into several irregular and regular columns of conidial chains (Figure 1D-E). The conidiophores were hyaline, and brown in color. Phylogenetic trees of ITS (Figure 2A) and ASAP sequences (Figure 2B) were constructed using a Neighbor-Joining method showing isolates Aspergillus niger #11, #15, #32, #33, #41 and #42 were grouped into the same clade as A. niger (accession no. MT446087). To examine virulence of A. niger, pathogenicity tests were performed three times by inoculating an asymptomatic fruit with six isolates of A. niger (isolate #11, #15, #32, #33, #41 and #42) and a single isolate for each species of Aspergillus aculeatus, Lasiodiplodia theobromae and Penicillium gerundense. Ten fruits were inoculated by placing a mycelial disc (6 mm) (Kouame et al. 2010) from a 5-day-old culture of each fungal colony while control fruits were non-inoculated with any fungal colony (10 fruits were inoculated with a sterile agar disc and 10 were non-inoculated, respectively). After 3 days, typical symptoms of Aspergillus fruit rot were observed on A. niger inoculated fruits, whereas the control fruits remained asymptomatic (Figure 1F-P). Aspergillus niger was reisolated and reidentified based on morphological and molecular characterization from the inoculated, symptomatic fruits, thus confirming Koch's postulates. A. niger causing widespread diseases in various plant and it is a common contaminant of food. This study shows A. niger to be highly virulent on bilimbi fruits and leads to reduction of fruit quality and its production. To our knowledge, this is the first report of A. niger causing fruit rot on bilimbi and future work on its pathogenesis may provide strategies for disease control against the pathogen.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.