Affiliations 

  • 1 Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia; Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, United States; Biorenewable Resources and Technology Program, Iowa State University, Ames, IA 50011, United States
  • 2 Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
  • 3 Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, United States; Biorenewable Resources and Technology Program, Iowa State University, Ames, IA 50011, United States; Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, United States; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States. Electronic address: leeuwen@iastate.edu
Bioresour Technol, 2014 Apr;158:1-6.
PMID: 24561994 DOI: 10.1016/j.biortech.2014.01.083

Abstract

Ethanol was produced via the simultaneous saccharification and fermentation (SSF) of dilute sodium hydroxide treated corn stover. Saccharification was achieved by cultivating either Phanerochaete chrysosporium or Gloeophyllum trabeum on the treated stover, and fermentation was then performed by using either Saccharomyces cerevisiae or Escherichia coli K011. Ethanol production was highest on day 3 for the combination of G. trabeum and E. coli K011 at 6.68 g/100g stover, followed by the combination of P. chrysosporium and E. coli K011 at 5.00 g/100g stover. SSF with S. cerevisiae had lower ethanol yields, ranging between 2.88 g/100g stover at day 3 (P. chrysosporium treated stover) and 3.09 g/100g stover at day 4 (G. trabeum treated stover). The results indicated that mild alkaline pretreatment coupled with fungal saccharification offers a promising bioprocess for ethanol production from corn stover without the addition of commercial enzymes.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.