In recent years, Recommender System (RS) research work has covered a wide variety of Artificial Intelligence techniques, ranging from traditional Matrix Factorization (MF) to complex Deep Neural Networks (DNN). Traditional Collaborative Filtering (CF) recommendation methods such as MF, have limited learning capabilities as it only considers the linear combination between user and item vectors. For learning non-linear relationships, methods like Neural Collaborative Filtering (NCF) incorporate DNN into CF methods. Though, CF methods still suffer from cold start and data sparsity. This paper proposes an improved hybrid-based RS, namely Neural Matrix Factorization++ (NeuMF++), for effectively learning user and item features to improve recommendation accuracy and alleviate cold start and data sparsity. NeuMF++ is proposed by incorporating effective latent representation into NeuMF via Stacked Denoising Autoencoders (SDAE). NeuMF++ can also be seen as the fusion of GMF++ and MLP++. NeuMF is an NCF framework which associates with GMF (Generalized Matrix Factorization) and MLP (Multilayer Perceptrons). NeuMF achieves state-of-the-art results due to the integration of GMF linearity and MLP non-linearity. Concurrently, incorporating latent representations has shown tremendous improvement in GMF and MLP, which result in GMF++ and MLP++. Latent representation obtained through the SDAEs' latent space allows NeuMF++ to effectively learn user and item features, significantly enhancing its learning capability. However, sharing feature extractions among GMF++ and MLP++ in NeuMF++ might hinder its performance. Hence, allowing GMF++ and MLP++ to learn separate features provides more flexibility and greatly improves its performance. Experiments performed on a real-world dataset have demonstrated that NeuMF++ achieves an outstanding result of a test root-mean-square error of 0.8681. In future work, we can extend NeuMF++ by introducing other auxiliary information like text or images. Different neural network building blocks can also be integrated into NeuMF++ to form a more robust recommendation model.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.