Affiliations 

  • 1 Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
  • 2 Research Centre for Computational and Theoretical Chemistry, Musiri, Anjalam, 621208, Tiruchirappalli, Tamilnadu, India
  • 3 Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
  • 4 Department of Chemistry, School of Physical, Chemical & Applied Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India
  • 5 Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan universiti, Bandar Barat, Kampar, 31900, Malaysia
  • 6 Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
  • 7 Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur, 54200, Malaysia
Heliyon, 2024 May 15;10(9):e29566.
PMID: 38707390 DOI: 10.1016/j.heliyon.2024.e29566

Abstract

The newly synthesized imidazole derivative namely, 4,5-bis[(E)-2-phenylethenyl]-1H,1'H-2,2'-biimidazole (KA1), was studied for its molecular geometry, docking studies, spectral analysis and density functional theory (DFT) studies. Experimental vibrational frequencies were compared with scaled ones. The reactivity sites were determined using average localized ionization analysis (ALIE), electron localized function (ELF), localized orbital locator (LOL), reduced density gradient (RDG), Fukui functions and frontier molecular orbital (FMO). Due to the solvent effect, a lower gas phase energy gap was observed. Through utilization of the noncovalent interaction (NCI) method, the hydrogen bond interaction, steric effect and Vander Walls interaction were investigated. Molecular docking simulations were employed to determine the specific atom inside the molecules that exhibits a preference for binding with protein. The parameters for the molecular electrostatic potential (MESP) and global reactivity descriptors were also determined. The thermodynamic characteristics were determined through calculations employing the B3LYP/cc-pVDZ basis set. Antimicrobial activity was carried out using the five different microorganisms like Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Candida albicans.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.