The application of artificial neural networks (ANNs) in the treatment of wastewater has achieved increasing attention, as it enhances the efficiency and sustainability of wastewater treatment plants (WWTPs). This paper explores the application of ANN-based models in WWTPs, focusing on the latest published research work, by presenting the effectiveness of ANNs in predicting, estimating, and treatment of diverse types of wastewater. Furthermore, this review comprehensively examines the applicability of the ANNs in various processes and methods used for wastewater treatment, including membrane and membrane bioreactors, coagulation/flocculation, UV-disinfection processes, and biological treatment systems. Additionally, it provides a detailed analysis of pollutants viz organic and inorganic substances, nutrients, pharmaceuticals, drugs, pesticides, dyes, etc., from wastewater, utilizing both ANN and ANN-based models. Moreover, it assesses the techno-economic value of ANNs, provides cost estimation and energy analysis, and outlines promising future research directions of ANNs in wastewater treatment. AI-based techniques are used to predict parameters such as chemical oxygen demand (COD) and biological oxygen demand (BOD) in WWTP influent. ANNs have been formed for the estimation of the removal efficiency of pollutants such as total nitrogen (TN), total phosphorus (TP), BOD, and total suspended solids (TSS) in the effluent of WWTPs. The literature also discloses the use of AI techniques in WWT is an economical and energy-effective method. AI enhances the efficiency of the pumping system, leading to energy conservation with an impressive average savings of approximately 10%. The system can achieve a maximum energy savings state of 25%, accompanied by a notable reduction in costs of up to 30%.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.