BACKGROUND: Wilms tumour, a common paediatric cancer, is difficult to treat in low- and middle-income countries due to limited access to imaging. Artificial intelligence (AI) has been introduced for staging, detecting, and classifying tumours, aiding physicians in decision-making. However, challenges include algorithm accuracy, translation into conventional diagnosis, reproducibility, and reliability. As AI technology advances, radiomics, an AI tool, emerges to extract tumour morphology and stage information.
OBJECTIVES: This review explores the application of radiomics in Wilms tumour management, including its potential in diagnosis, prognosis, and treatment. Additionally, it discusses the future prospects of AI in this field and potential directions for automation-aided Wilms tumour treatment.
METHODS: The review analyses various research studies and articles on the use of radiomics in Wilms tumour management. This includes studies on automated deep learning-based classification, interobserver variability in histopathological analysis, and the application of AI in staging, detecting, and classifying Wilms tumours.
RESULTS: The review finds that radiomics offers several promising applications in Wilms tumour management, including improved diagnosis: it helps in classifying Wilms tumours from other paediatric kidney tumours, prognosis prediction: radiomic features can be used to predict both staging and response to preoperative chemotherapy, Treatment response assessment: Radiomics can be used to monitor the response of Wilms and to predict the feasibility of nephron-sparing surgery.
CONCLUSIONS: This review concludes that radiomics has the potential to significantly improve the diagnosis, prognosis, and treatment of Wilms tumours. Despite some challenges, such as the need for further research and validation, AI integration in Wilms tumour management offers promising opportunities for improved patient care.
ADVANCES IN KNOWLEDGE: This review provides a comprehensive overview of the potential applications of radiomics in Wilms tumour management and highlights the significant role AI can play in improving patient outcomes. It contributes to the growing body of knowledge on AI-assisted diagnosis and treatment of paediatric cancers.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.